K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2024

a) \(v_x=v_0cos\alpha\)

\(v_y=v_0sin\alpha\)

\(x=v_xt=v_0cos\alpha.t\Rightarrow t=\dfrac{x}{v_0cos\alpha}\)

\(\Rightarrow y=v_yt-\dfrac{1}{2}gt^2\)

\(y=v_0sin\alpha.\dfrac{x}{v_0\cos\alpha}-\dfrac{1}{2}g\left(\dfrac{x}{v_0cos\alpha}\right)^2\)

\(y=xtan\alpha-\dfrac{1}{2}g\dfrac{x^2}{v_0^2cos^2\alpha}\)

\(y=xtan30^o-\dfrac{1}{2}.10.\dfrac{x^2}{30^2cos^230^o}\)

\(y=\dfrac{\sqrt{3}}{3}x-\dfrac{1}{135}x^2\)

Có \(y'=\dfrac{\sqrt{3}}{3}-\dfrac{2}{135}x\)

Cho \(y'=0\Leftrightarrow x=\dfrac{45\sqrt{3}}{2}\left(m\right)\) 

Khi đó lập bảng biến thiên, dễ thấy rằng \(maxy=\)\(y\left(\dfrac{45\sqrt{3}}{2}\right)=\dfrac{45}{4}=11,25\left(m\right)\)

Thời gian vật đạt được tầm cao đó là \(t=\dfrac{x}{v_0cos\alpha}=\dfrac{\dfrac{45\sqrt{3}}{2}}{30cos30^o}=\dfrac{3}{2}=1,5\left(s\right)\)

b) \(y=v_yt-\dfrac{1}{2}gt^2=v_0sin30^ot-\dfrac{1}{2}.10t^2=15t-5t^2\)

Cho \(y=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

Vậy thời gian chuyển động của vật là 3 giây

c) Tầm xa \(L=v_xt=30cos30^o.3=45\sqrt{3}\approx77,94\left(m\right)\)

d) Vật chạm đất \(v_x'=v_0cos30^o=15\sqrt{3}\left(m/s\right)\)

\(v_y'=v_y-gt=15-10.3=-15\left(m/s\right)\)

\(\Rightarrow\) Độ lớn vận tốc khi vật chạm đất là \(v=\sqrt{v_x'^2+v_y'^2}=30\left(m/s\right)\)

21 tháng 8 2024

bạn còn cần câu trả lời nữa ko ạ?

cảm ơn ^^

#hoctot

27 tháng 7 2024

Gọi thời gian chuyển động của vật là \(t\)

Khi đó \(s_t=v_0t+\dfrac{1}{2}at^2=0.t+\dfrac{1}{2}.2t^2=t^2\)

\(s_{t-1}=v_0\left(t-1\right)+\dfrac{1}{2}a\left(t-1\right)^2=\left(t-1\right)^2\)

Trong giây cuối vật đi được 25m

\(\Leftrightarrow t^2-\left(t-1\right)^2=25\)

\(\Leftrightarrow2t-1=25\)

\(\Leftrightarrow t=13\)

Vậy thời gian vật chuyển động là 13 giây.

29 tháng 7 2024

 \(\left\{{}\begin{matrix}V+v=18\\V-v=12\end{matrix}\right.\Leftrightarrow\left(V,v\right)=\left(15,3\right)\)

 Đặt \(AB=s\left(km\right)\) thì \(t_{xuôi}=\dfrac{s}{18}\left(h\right),t_{ngược}=\dfrac{s}{12}\left(h\right)\) 

 Theo đề bài, ta có: \(\dfrac{s}{18}+\dfrac{s}{12}=2,5\Leftrightarrow s=18\left(km\right)\)

 Nếu vận tốc dòng nước là \(v\left(km/h\right)\) và vận tốc thực của thuyền là \(V\left(km/h\right)\) thì:

 \(\left\{{}\begin{matrix}V+v=18\\V-v=12\end{matrix}\right.\Leftrightarrow\left(V,v\right)=\left(15,3\right)\). Vậy \(v_{nước}=3km/h\)

 Có \(t_{xuôi}=\dfrac{s}{18}=\dfrac{18}{18}=1\left(h\right)\)\(t_{ngược}=\dfrac{s}{12}=\dfrac{18}{12}=1,5\left(h\right)\)