Bài 4: Cho đường tròn tâm O, bán kính R = 8cm và một điểm A có khoảng cách OA = 16cm. Một dưong kính BC quay xung quanh tâm O (dưong thang BC không di qua A). Đưong tròn ngoại tiếp tam giác ABC cắt đưong thang OA tại điểm thứ hai D. a/ Chứng minh A OAB và AOCD đồng dạng. b/ Tính OD, suy ra D là điểm cố định khi đường kính BC quay xung quanh điểm O. c/Giả sử AB cắt đưong tròn (O) tại điểm thứ hai E và AC cắt đường tròn (O) tại điểm thứ hai F và gọi P là giao điểm của EF với OA. Chứng minh bốn điểm C, F, D, P cùng nằm trên một đưong tròn. Có nhận xét gì về bốn điểm B, E, D, P?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cauchy schwarz dạng engel , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}+\frac{1^2}{t}\ge\frac{16}{x+y+z+t}\)
\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{16}{x+y+z+t}+1\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=t\)
Vậy ta có điều phải chứng minh
cách khác :3
Áp dụng bđt phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(< =>\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(< =>\frac{a+b}{ab}.\left(a+b\right).ab\ge\frac{4}{a+b}.\left(a+b\right).ab\)
\(< =>\left(a+b\right)^2\ge4ab\)
\(< =>a^2+2ab+b^2\ge4ab\)
\(< =>\left(a-b\right)^2\ge\)(luôn đúng)
Nên ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+1\ge\frac{4}{x+y}+\frac{4}{z+t}+1\ge\frac{16}{x+y+z+t}+1\)
Bài làm:
\(\frac{1}{x-1}.\sqrt{x^2-2x+1}\)
\(=\frac{1}{x-1}.\sqrt{\left(x-1\right)^2}\)
\(=\frac{1}{x-1}.\left|x-1\right|\)
\(=\frac{1}{x-1}.-\left(x-1\right)\)(Vì x < 1 )
\(=-1\)
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1