Giải hệ phương trình: \(\hept{\begin{cases}x^3-x=x^2y-y\\\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{y}+2=0\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hôm nay sol vài bài trên olm rồi off tiếp
\(\sqrt{xy+y}=\sqrt{y\left(x+1\right)}\)
ĐKXĐ: \(x>-1,y>0\)
Đặt \(\sqrt{x+1}=a;\sqrt{y}=b\left(a,b>0\right)\)
HPT \(\Leftrightarrow\hept{\begin{cases}a^2-1+\frac{1}{a}=\frac{4}{a+b}-1\\b^2+\frac{1}{b}=2ab\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^4+a^3b-3a+b=0\\2ab^2-b^3-1=0\end{cases}}\)
PT(2) \(\Leftrightarrow2ab^2=\left(b+1\right)\left(b^2-b+1\right)\Rightarrow a=\frac{\left(b+1\right)\left(b^2-b+1\right)}{2b^2}\)
Thay ngược lên pt(1) tương đương \(\left(3b^6+8b^3+1\right)\left(b^3-1\right)^2=0\)
\(\Rightarrow b=1\rightarrow a=1\)
HPT có nghiệm duy nhất a = b = 1
\(\hept{\begin{cases}6x^2-xy-2y^2=56\\5x^2-xy-y^2=49\end{cases}}\)
Lấy phương trình 1 trừ phương trình 2 ta được :
\(\left(6x^2-xy-2y^2\right)-\left(5x^2-xy-y^2\right)=56-49\)
\(< =>6x^2-xy-2y^2-5x^2+xy+y^2=7\)
\(< =>\left(6x^2-5x^2\right)+\left(xy-xy\right)-\left(2y^2-y^2\right)=7\)
\(< =>x^2-y^2=7\)\(< =>\left(x-y\right)\left(x+y\right)=7\)
\(< =>\hept{\begin{cases}x-y\\x+y\end{cases}=\hept{\begin{cases}1\\7\end{cases}=\hept{\begin{cases}7\\1\end{cases}=\hept{\begin{cases}-1\\-7\end{cases}=\hept{\begin{cases}-7\\-1\end{cases}}}}}}\)
Với \(\hept{\begin{cases}x-y=1\\x+y=7\end{cases}< =>\hept{\begin{cases}x=1+y\\x+y=7\end{cases}}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(1+y+y=7< =>2y=7-1< =>y=\frac{7-1}{2}=3\)
khi đó : \(x=1+y=1+3=4\)
Với \(\hept{\begin{cases}x-y=7\\x+y=1\end{cases}}< =>\hept{\begin{cases}x=7+y\\x+y=1\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(7+y+y=1< =>2y=1-7< =>y=\frac{1-7}{2}=-3\)
khi đó : \(x=7+y=7+\left(-3\right)=4\)
Với \(\hept{\begin{cases}x-y=-1\\x+y=-7\end{cases}}< =>\hept{\begin{cases}x=-1+y\\x+y=-7\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(-1+y+y=-7< =>2y=-7+1=-6< =>y=-\frac{6}{2}=-3\)
khi đó : \(x=-1-3=-4\)
Với \(\hept{\begin{cases}x-y=-7\\x+y=-1\end{cases}}< =>\hept{\begin{cases}x=-7+y\\x+y=-1\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(-7+y+y=-1< =>2y=-1+7=6< =>y=\frac{6}{2}=3\)
khi đó : \(x+3=-1< =>x=-1-3=-4\)
Vậy ta có 4 bộ số sau thỏa mãn hệ pt trên \(\left\{x;y\right\}=\left\{-4;3\right\};\left\{-4;-3\right\};\left\{4;-3\right\};\left\{4;3\right\}\)
\(\hept{\begin{cases}\left(x+y\right)^2=xy+3y-1\\x+y=\frac{x^2+y+1}{1+x^2}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y^2+xy-3y+1=0\\x+y=\frac{y}{1+x^2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y\left(x+y-1\right)=-\left(x^2+1\right)\\x+y-1=\frac{y}{1+x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{y}{1+y}\left(x+y-3\right)=-1\\x+y-3=\frac{y}{1+x^2}-2\end{cases}}}\)
Đặt \(\frac{y}{x^2+1}=1;x+y-3=b\)
hệ phương trình trở thành \(\hept{\begin{cases}ab=-1\\a-b=2\end{cases}\Leftrightarrow\hept{\begin{cases}b\left(b+2\right)=-1\\a-b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b+1\right)^2=0\\a=2+b\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-1\\a=1\end{cases}}}\)
đến đây thay vào tìm x,y
Đặt \(x^{10}=a\ge0\)
Khi đó:
\(a^{10}-10a+2029\)
\(=\left(a^{10}+1+1+1+1\right)-10a+2025\)
\(\ge5\sqrt[5]{a^{10}}-10a+2025\)
\(=5a^2-10a+2025\)
\(=5\left(a^2-2a+1\right)+2020\)
\(=5\left(a-1\right)^2+2020\ge2020\)
Đẳng thức xảy ra tại x=1 hoặc x=-1
\(\hept{\begin{cases}x^3-x=x^2y-y\left(1\right)\\\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{y}+2=0\left(2\right)\end{cases}}\)
điều kiện: \(y\ge0\)
\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=\pm1\end{cases}}\)
-nếu x=\(\pm\)1 thay vào phương trình (2) ta có: \(\sqrt{y}-1=0\Leftrightarrow y=1\)
-nếu \(x=y\ge0\)
khi đó \(\left(2\right)\Leftrightarrow\sqrt{2\left(x^4+1\right)}-4\sqrt{x}+2=0\left(3\right)\)
do \(2\left(x^4+1\right)\ge2\cdot2\sqrt{x^4\cdot1}=4x^2\Rightarrow\sqrt{2\left(x^4+1\right)}\ge2\left|x\right|=2x\)
nên \(VT\left(3\right)\ge2\left(x-2\sqrt{x}+1\right)=2\left(\sqrt{x}-1\right)^2\ge0\)
do đó \(pt\left(3\right)\Leftrightarrow\hept{\begin{cases}x^4=1\\\sqrt{x}-1=0\end{cases}\Leftrightarrow x=1\Rightarrow y=1}\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left\{\left(1,1\right);\left(-1;1\right)\right\}\)