giải pt \(\frac{x+1}{2019}\)+\(\frac{x+2}{2018}\)+\(\frac{x+3}{2017}\)=\(\frac{x+4}{2016}\)+\(\frac{x+5}{2015}\)+\(\frac{x+6}{2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{13}{x^2}-\frac{36}{\left(x+6\right)^2}=1\left(x\ne\left\{0;-6\right\}\right)\)
\(\Leftrightarrow\frac{13\left(x+6\right)^2-36x^2}{x^2\left(x+6\right)^2}=1\)
\(\Leftrightarrow13\left(x^2+12x+36\right)-36x^2=x^2\left(x^2+12x+36\right)\)
\(\Leftrightarrow-23x^2+156x+468=x^4+12x^3+36x^2\)
\(\Leftrightarrow x^4+12x^3+59x^2-156x-468=0\)
\(\Leftrightarrow\left(x^4+2x^3\right)+\left(10x^3+20x^2\right)+\left(39x^2+78x\right)-\left(234x+468\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+10x^2+39x-234\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x^3-3x^2\right)+\left(13x^2-39x\right)+\left(78x-234\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x^2+13x+78\right)=0\)
Vì \(x^2+13x+78>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy x = -2 hoặc x = 3
\(\frac{x-2017}{2018}+\frac{x-2018}{2017}=\frac{2017}{x-2018}+\frac{2018}{x-2017}\)
\(\Leftrightarrow\frac{2017.\left(x-2017\right)+2018.\left(x-2018\right)}{2018.2017}=\frac{2017.\left(x-2017\right)+2018.\left(x-2018\right)}{\left(x-2018\right).\left(x-2017\right)}\)
\(\Leftrightarrow2018.2017=\left(x-2018\right).\left(x-2017\right)\)
\(\Leftrightarrow2018.2017=x^2-4035x+2018.2017\)
\(\Leftrightarrow x^2-4035x=2018.2017-2018.2017\)
\(\Leftrightarrow x.\left(x-4035\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4035=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4035\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;4035\right\}\)
nhìn căng nhể :))
a) ( x - 1 )( x - 3 )( x + 5 )( x + 7 ) - 297 = 0
<=> [ ( x - 1 )( x + 5 ) ][ ( x - 3 )( x + 7 ) ] - 297 = 0
<=> ( x2 + 4x - 5 )( x2 + 4x - 21 ) - 297 = 0
Đặt t = x2 + 4x - 5
pt <=> t( t - 16 ) - 297 = 0
<=> t2 - 16t - 297 = 0
<=> t2 - 27t + 11t - 297 = 0
<=> t( t - 27 ) + 11( t - 27 ) = 0
<=> ( t - 27 )( t + 11 ) = 0
<=> ( x2 + 4x - 5 - 27 )( x2 + 4x - 5 + 11 ) = 0
<=> ( x2 + 4x - 32 )( x2 + 4x + 6 ) = 0
<=> ( x2 - 4x + 8x - 32 )( x2 + 4x + 6 ) = 0
<=> [ x( x - 4 ) + 8( x - 4 ) ]( x2 + 4x + 6 ) = 0
<=> ( x - 4 )( x + 8 )( x2 + 4x + 6 ) = 0
Đến đây dễ rồi :)
Gọi vận tốc đi,là v1 thời gian đi ; về lần lượt là t1 ; t2 (v1 ; t1 ; t2 > 0)
=> vận tốc về v1 - 5
Đổi 30 phút = 1/2 giờ
Ta có t2 - t1 = 1/2
<=> \(\frac{S}{v_1-5}-\frac{S}{v_1}=\frac{1}{2}\)
<=> \(\frac{180}{v_1-5}-\frac{180}{v_1}=\frac{1}{2}\)
<=> \(\frac{1}{v_1-5}-\frac{1}{v_1}=\frac{1}{360}\)
\(\Leftrightarrow\frac{5}{\left(v_1-5\right)v_1}=\frac{1}{360}\)
<=> (v1 - 5).v1 = 1800
<=> (v1)2 - 5.v1 = 1800
<=> (v1)2 - 45.v1 + 40v1 - 1800 = 0
<=> v1(v1 - 45) + 40(v1 - 45) = 0
<=> (v1 + 40)(v1 - 45) = 0
<=> \(\orbr{\begin{cases}v_1=-40\left(\text{loại}\right)\\v_1=45\left(\text{tm}\right)\end{cases}}\)
Vậy vận tốc lúc đi là 45 km/h
Giải phương trình sau:
a) (2x + 3)(x - 3) + x(x - 2) = 3(x - 2)2
b) (4x + 7)(x - 3) - x2 = 3x(x + 2)
a) \(\left(2x+3\right)\left(x-3\right)+x\left(x-2\right)=3\left(x-2\right)^2\)
\(\Leftrightarrow2x^2-3x-9+x^2-2x=3\left(x^2-4x+4\right)\)
\(\Leftrightarrow3x^2-5x-9=3x^2-12x+12\)
\(\Leftrightarrow7x=21\Rightarrow x=3\)
b) \(\left(4x+7\right)\left(x-3\right)-x^2=3x\left(x+2\right)\)
\(\Leftrightarrow4x^2-5x-21-x^2=3x^2+6x\)
\(\Leftrightarrow11x=-21\Rightarrow x=-\frac{21}{11}\)
\(\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+...=...+\left(\frac{x+6}{2014}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2016}+\frac{x+2020}{2015}+\frac{x+2020}{2014}\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy \(x=-2020\)