Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có góc A=120 độ. Chứng minh rằng: \(\frac{1}{MA}=\frac{1}{AB}+\frac{1}{AC}\)với AM là đường trung tuyến
Cho a,b,c,d,e là các số thực. Chứng minh rằng:
1) \(a^4+b^4+c^4+1\ge2a\left(a^2b-a+c+1\right)\)
2) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
3) \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(9\left(x+1\right)^4=4\left(x^4+x^2+6x+3\right)\)
có bao nhiêu giá trị nguyên của tham số m (biết \(m\ge-2019\)
để hệ phương trình sau có nghiệm thực
\(\hept{\begin{cases}x^2+x-\sqrt[3]{y}=1-2m\\2x^3-x^2\sqrt[3]{y}-2x^2+x\sqrt[3]{y}=m\end{cases}}\)
Hệ phương trình \(\hept{\begin{cases}y^2-\left|xy\right|+2=0\\8-x^2=\left(x+2y\right)^2\end{cases}}\)
có các nghiệm là \(\left(x_1;y_1\right);\left(x_2;y_2\right)\)
với \(x_1;y_1;x_2;y_2\) là các số vô tỉ
tìm \(S=x_1^2+x_2^2+y_1^2+y_2^2\)
Chứng mình rằng:
a,\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(a,b,c>0\right)\)
b,\(a^2+4b^2+9c^2\ge12\)biết \(a+2b+3c=6\)
cho a,b,c \(\ge0\)thỏa mãn: a2+b2+c2=1. Tìm GTLN,GTNN của biểu thức: A=\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
cho hình thang ABCD ngoại tiếp được có các đấy BC =b;Da=d (b<d) và góc giữa 2 cạnh bên bằng a.Tính bán kính đường tròn nội tiếp
Tìm tập hợp các điểm M thỏa mãn \(\overrightarrow{MB}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\) với A,B,C là 3 đỉnh của tam giác
cho hcn ABCD có AB=ac và AD=\(a\sqrt{2}\).gọi K là trung điểm của cạnh AD .tính \(\overrightarrow{BK}.\overrightarrow{AC}\)