K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\left(\sqrt{3}-\sqrt{5}\right)^2}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{3+2\sqrt{15}+5+3-2\sqrt{15}+5}{3-5}\)

\(=\frac{3+5+3+5}{-2}=\frac{16}{-2}=-8\)

17 tháng 7 2020

+) ĐK: x khác -5 

\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11\)

<=> \(x^2+\frac{25x^2}{\left(x+5\right)^2}-2.x\frac{5x}{\left(x+5\right)}+\frac{10x^2}{\left(x+5\right)}=11\)

<=> \(\left(x-\frac{5x}{x+5}\right)^2+\frac{10x^2}{x+5}=11\)

<=> \(\left(\frac{x^2}{x+5}\right)^2+\frac{10x^2}{x+5}-11=0\) ( đặt t = x^2/x+5 => có phương trình: t^2 + 10t - 11 = 0 => giải t => tìm x ) 

<=> \(\orbr{\begin{cases}\frac{x^2}{x+5}=1\\\frac{x^2}{x+5}=-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-x-5=0\\x^2+11x+55=0\left(vn\right)\end{cases}}\Leftrightarrow x=\frac{1}{2}\pm\frac{\sqrt{21}}{2}\)  ( thỏa mãn) 

\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11ĐK:x\ne-5\)

\(\Leftrightarrow\frac{x^2\left(x+5\right)^2}{\left(x+5\right)^2}+\frac{25x^2}{\left(x+5\right)^2}=\frac{11\left(x+5\right)^2}{\left(x+5\right)^2}\)

Khử mẫu ta đc : \(\Leftrightarrow x^2\left(x+5\right)^2+25x^2=11\left(x+5\right)^2\)

\(\Leftrightarrow x^4+10x^3+25x^2+25x^2=11x^2+110x+275\)

\(\Leftrightarrow x^4+10x^3+50x^2-11x^2-110x-275=0\)

\(\Leftrightarrow x^4+10x^3+39x^2-110x-275=0\)

17 tháng 7 2020

\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\)

\(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}+\frac{2b^2-2ca}{2b^2+c^2+a^2}+\frac{2c^2-2ab}{2c^2+a^2+b^2}\right)\)

\(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}-1+\frac{2b^2-2ca}{2b^2+c^2+a^2}-1+\frac{2c^2-2ab}{2c^2+a^2+b^2}-1\right)+\frac{3}{2}\)

\(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\)

NHận xét:

\(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}\)\(=\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)

Tương tự: \(\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}\le\text{​​}\text{​​}\frac{a^2}{b^2+a^2}+\frac{c^2}{b^2+c^2}\)

\(\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le\text{​​}\text{​​}\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\)

=> \(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le3\)

=> \(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\ge-\frac{1}{2}.3+\frac{3}{2}=0\)

=> \(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\ge0\)

Dấu "=" xảy ra <=> a = b = c 

17 tháng 7 2020

Huy làm có gì sai mọi người góp ý nha :3

a

Ta có 2 đường trung trực của các đoạn thẳng AM,AN cắt nhau tại I nên I là tâm đường tròn ngoại tiếp tam giác AMN

b

Hạ đường cao AK. Gọi L đối xứng với A qua K. Suy ra L cố định.Ta sẽ chứng minh tứ giác AMLN nội tiếp. Thật vậy !

Ta dễ có được đường tròn tâm I ngoại tiếp tam giác ALN 

Ta có:\(\widehat{AIN}=2\widehat{ALN};\widehat{AIN}=2\widehat{AMN}\Rightarrow\widehat{ALN}=\widehat{AMN}\) nên tứ giác AMLN nội tiếp khi đó đường tròn I luôn đi qua điểm L cố định

Hình tui đã vẽ trong TKHĐ nhé :))

21 tháng 7 2020

Mình làm ra vở cho bạn rồi nhé. Chữ mình hơi xấu, mong bạn thông cảm.

17 tháng 7 2020

\(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)

By Titu's Lemma we have:

\(LHS\ge\frac{\left(x+y\right)^2}{x+y-2}\) and we need prove that:

\(\left(x+y\right)^2\ge8\left(x+y\right)-16\)

But the last inequalities is true. ( QED )

16 tháng 7 2020

Trả lời:

\(M=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(M\inℤ\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\inℤ\)

\(\Rightarrow\frac{4}{\sqrt{x}-3}\inℤ\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\sqrt{x}-3\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)
\(\sqrt{x}\)\(-1\left(L\right)\)\(1\)\(2\)\(4\)\(5\)\(7\)
\(x\)     \(/\)\(1\left(TM\right)\)\(4\left(TM\right)\)\(16\left(TM\right)\)\(25\left(TM\right)\)\(49\left(TM\right)\)

Vậy \(x\in\left\{1,4,16,25,49\right\}\) thì \(M\inℤ\)

16 tháng 7 2020

Đk: x \(\ge\)0; x \(\ne\)9

M = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để M nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)

<=> \(4⋮\sqrt{x}-3\)<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Do \(\sqrt{x}-3\ge-3\) => \(\sqrt{x}-3\in\left\{\pm1;\pm2;4\right\}\)

Lập bảng: 

\(\sqrt{x}-3\)         1            -1        2         -2          4
  x    16   4    25  1 49

Vậy ....

16 tháng 7 2020

Mình xài p,q,r nhé :))

Ta có:

\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)

\(a^4+b^4+c^4=1-4q+2q^2+4r\)

Khi đó BĐT tương đương với:

\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)

\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)

\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )

21 tháng 7 2020

\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)

\(=p^3-3pq+3r\)

--------------------------------------

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)

\(=p^4-4p^2q+2q^2+4pr\)

Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq

16 tháng 7 2020

mng ơi giúp mình với ạ

17 tháng 7 2020

mình trả lời hơi muộn :(

A B C H

1, Theo giả thiết ta có C = 45* nên tam giác ABC là tam giác vuông cân

Suy ra AB = AC = 2 (cm) Mà theo đánh giá của Pitago thì :BC^2 = 8 <=> BC = căn 8

Ta có hệ thức lượng sau : AB.AC=AH.BC <=> 4=căn 8 . AH<=> AH=2/căn2

Lại có hệ thức lượng sau : AC^2=CH.BC<=>4=căn 8 . CH <=> CH=2/căn2

Mặt khác : +)Cos alpha = AB/BC = 2/căn8 = 1/căn2

+)Cos beta = AC/BC = 2/căn8 = 1/căn2

+) Sin alpha = AC/BC = 2/căn8 = 1/căn2

+) Sin beta = AB/BC = 2/căn8 = 1/căn2

Vậy ...

Mấy câu còn lại để từ từ mình làm dần