Bài 1: Cho a2 + b2 + c2 = ab + bc + ca. Chứng minh a = b = c
Bài 2: Cho ( a/ b + c) + ( b/ a + c) + ( c/ a + b) = 1. Chứng minh rằng: ( a2/ b + c) + ( b2/ a + c) + ( c2/ a + b) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1.2+2.3+3.4+......+98.99\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+98.99.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+98.99.\left(100-97\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(=98.99.100=970200\)
\(\Rightarrow A=\frac{970200}{3}=323400\)
Ta có: \(\frac{\left(1.2+2.3+3.4+....+98.99\right).x}{323400}=323400\)
\(\Leftrightarrow\frac{323400.x}{323400}=323400\)\(\Leftrightarrow x=323400\)
Vậy tập nghiệm của phương trình là \(S=\left\{323400\right\}\)
Gọi \(A=1.2+2.3+3.4+...+98.99\)
\(3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(=1.2.3-1.2.0+2.3.4-2.3.1+3.4.5-3.4.2+...+98.99.100-98.99.97\)
\(=98.99.100-1.2.0\)
\(=970200\)
\(A=\frac{970200}{3}\)
\(=323400\)
Ta có : \(\frac{A.x}{323400}=323400\)
\(\Leftrightarrow\frac{323400.x}{323400}=323400\)
\(\Leftrightarrow x=323400\)
Vậy phương trình trên có 1 nghiệm \(x=323400\)
) Chứng minh Δ EBF đồng dạng Δ EDC Tam giac EDC dong dang tam giac ADF(g,g,g)=> Goc AFD = goc ECD Ma AFD = 90 - goc B => Goc EDC = Goc BXet tam giac vuong EBF va tam giac vuong EDC ta co:+) Goc A1 = goc E = 90+) Goc B = Goc EDC+) Goc BFE = Goc C=> Δ EBF đồng dạng Δ EDC
2 tiếng rồi chưa bạn nào làm à :v để "Top 4 Battle City" :))
( x + 1 )2( 3x + 2 )( 3x + 4 ) - 8 = 0
<=> ( x2 + 2x + 1 )( 9x2 + 18x + 8 ) - 8 = 0
Đặt x2 + 2x + 1 = y
pt <=> y( 9y - 1 ) - 8 = 0
<=> 9y2 - y - 8 = 0
<=> ( y - 1 )( 9y + 8 ) = 0
<=> ( x2 + 2x + 1 - 1 )[ 9( x2 + 2x + 1 ) + 8 ] = 0
<=> x( x + 2 )[ 9( x + 1 )2 + 8 ] = 0
Vì 9( x + 1 )2 + 8 ≥ 8 > 0 ∀ x
=> x( x + 2 ) = 0
<=> x = 0 hoặc x = -2
Vậy tập nghiệm của phương trình là S = { 0 ; -2 }
Ta có : \(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)
\(\Leftrightarrow\left[\left(x+9\right)\left(x+12\right)\right]\left[\left(x+10\right)\left(x+11\right)\right]=170\)
\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)
Đặt \(x^2+21x+109=a\).Khi đó , PT tương đương với :
\(\left(a-1\right)\left(a+1\right)=170\)
\(\Leftrightarrow a^2-1=170\)
\(\Leftrightarrow a^2=171\)
Chỗ này thì tớ nghĩ đề sai , 170 phải là 168
\(\left(x+9\right)\left(x+10\right)\left(x+11\right)\left(x+12\right)=170\)
\(\Leftrightarrow\left(x+9\right)\left(x+12\right)\left(x+10\right)\left(x+11\right)=170\)
\(\Leftrightarrow\left(x^2+21x+108\right)\left(x^2+21x+110\right)=170\)
Đặt \(x^2+21x+108=t\)
\(\Leftrightarrow t\left(t+2\right)=170\Leftrightarrow t^2+2t-170=0\)
\(\Leftrightarrow t=1\pm3\sqrt{19}\)đề sai ?
\(\left(x+9\right)^2-\left(x-9\right)^2=0\)
\(\Leftrightarrow[\left(x+9\right)-\left(x-9\right)][\left(x+9\right)+\left(x-9\right)]=0\)
\(\Leftrightarrow\left(x+9-x+9\right)\left(x+9+x-9\right)=0\)
\(\Leftrightarrow18\times2x=0\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình S=(0)
\(\left(x+9\right)^2-\left(x-9\right)^2=0\)
\(\Leftrightarrow\left(x+9-x+9\right)\left(x+9+x-9\right)=0\)
TH1 : \(x+9-x+9=0\Leftrightarrow18\ne0\)
TH2 : \(x+9+x-9=0\Leftrightarrow2x=0\Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình là S = { 0 }
1) Ta có a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
<=> a-b = 0 và b-c=0 và c-a=0
<=> a=b=c
a^2/b+c + b^2/a+c + c^2=a+b
= a(a/b+c) + b(b/a+c) + c(c/a+b)
= a(a/b+c + 1 - 1) + b(b/a+c + 1 - 1) + c(c/a+b + 1 - 1)
= a(a+b+c/b+c) - a + b(a+b+c/a+c) - b + c(a+b+c/a+b) - c
= (a+b+c)(a/b+c + b/a+c + c/a+b) - (A+b+c)
mà a/b+c + b/a+c + c/a+b = 1
= a+b+c - (a+b+c)
= 0