Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
( 3x + 6 )( -x - 9 ) = ( 3x + 6 )( x - 3 )
<=> ( 3x + 6 )( -x - 9 ) - ( 3x + 6 )( x - 3 ) = 0
<=> ( 3x + 6 )( -x - 9 - x + 3 ) = 0
<=> ( 3x + 6 )( -2x - 6 ) = 0
<=> 3x + 6 = 0 hoặc -2x - 6 = 0
<=> x = -2 hoặc x = -3
Vậy phương trình có tập nghiệm S = { -2 ; -3 }
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(x-2016=a\) khi đó PT trở thành:
\(PT\Leftrightarrow\frac{\left(a+1\right)^2+a\left(a+1\right)+a^2}{\left(a+1\right)^2-a\left(a+1\right)+a^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+2a+1+a^2+a+a^2}{a^2+2a+1-a^2-a+a^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{3a^2+3a+1}{a^2+a+1}=\frac{19}{49}\)
\(\Leftrightarrow147a^2+147a+49=19a^2+19a+19\)
\(\Leftrightarrow128a^2+128a+30=0\)
\(\Leftrightarrow64a^2+64a+15=0\)
\(\Leftrightarrow\left(64a^2+24a\right)+\left(40a+15\right)=0\)
\(\Leftrightarrow8a\left(8a+3\right)+5\left(8a+3\right)=0\)
\(\Leftrightarrow\left(8a+3\right)\left(8a+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{8}\\a=-\frac{5}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2016=-\frac{3}{8}\\x-2016=-\frac{5}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{16125}{8}\\x=\frac{16123}{8}\end{cases}}\)
Vậy: ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2=4\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=4\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(y-z\right)^2\ge0\forall y,z\\\left(z-x\right)^2\ge0\forall z,x\end{cases}}\)\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\)
\(\Rightarrow x=y=z\left(đpcm\right)\)
Biến đổi vế trái ta có
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(=2x^2+2y^2+2z^2-2xy-2yz-2zx\)
Biến đổi vế phải ta có
\(4\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=4x^2+4y^2+4z^2-4xy-4yz-4zx\)
Theo bài
\(2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2\)
\(-4xy-4yz-4zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\)
Để \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(3x+3\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\frac{3\sqrt{2}+1}{3}\end{cases}}\)
Vậy ...
\(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left[1+3\left(x+\sqrt{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+\sqrt{18}\right)=0\)
công thức \(a\sqrt{b}=\sqrt{a^2b}\)hay \(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\)nhá, ko lại thắc mắc
\(\Leftrightarrow x=\sqrt{2};x=\frac{-\sqrt{18}-1}{3}\)