tìm giá trị nhỏ nhất của biểu thức:
M= 3x^2 + y^2 - 8x - 4y + 2xy + 2028
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Hình bình hành ADME có \(\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Sửa đề: ACMN là hình bình hành
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MD//AB
Do đó: D là trung điểm của AC
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
=>AMBN là hình bình hành
Hình bình hành AMBN có MN\(\perp\)AB
nên AMBN là hình thoi
=>AN//BM và AN=BM
Ta có: AN//BM
M thuộc BC
Do đó: AN//MC
Ta có: AN=BM
BM=MC
Do đó: AN=MC
Xét tứ giác ACMN có
AN//CM
AN=CM
Do đó: ACMN là hình bình hành
c: D là trung điểm của AC
=>\(AD=DC=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
E là trung điểm của AB
=>\(AE=EB=\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
ADME là hình chữ nhật
=>\(S_{ADME}=AD\cdot AE=3\cdot4=12\left(cm^2\right)\)
ACMN là hình bình hành
=>MN=AC
=>MN=8(cm)
AMBN là hình thoi
=>\(S_{AMBN}=\dfrac{1}{2}\cdot AB\cdot MN=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
d: Để AMBN là hình thoi thì \(\widehat{AMB}=90^0\)
=>AM\(\perp\)BC
Xét ΔABC có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔABC cân tại A
=>AB=AC
Mình cần giúp mong các bạn giúp mình :((( mình đang vội
Hiệu của hai số sau khi thêm vào số bị trừ 15 đơn vị và bớt đi ở số trừ 8 đơn vị là:
277+15-(-8)=292+8=300
Hiệu số phần bằng nhau là 7-1=6(phần)
Số bị trừ mới là 300:6x7=350
Số trừ mới là 350-300=50
Số bị trừ ban đầu là:
350-15=335
Số trừ ban đầu là:
50+8=58
Hiệu của hai số sau khi thêm vào số bị trừ 15 đơn vị và bớt đi ở số trừ 8 đơn vị là:
277+15-(-8)=292+8=300
Hiệu số phần bằng nhau là 7-1=6(phần)
Số bị trừ mới là 300:6x7=350
Số trừ mới là 350-300=50
Số bị trừ ban đầu là:
350-15=335
Số trừ ban đầu là:
50+8=58
Giải:
\(x.x\) = 1 + 3 + 5 +7 + 9 + ...+ 2499
xét vế trái ta có:
VT = 1 + 3 + 5 +7 + 9 + ... + 2499
Xét dãy số 1; 3; 5; 7; 9;...;2499
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: (2499 - 1) : 2 + 1 = 1250
Tổng các số hạng trên là: (2499 + 1) x 1250 : 2 = 1562500
Khi đó ta có: \(x^2\) = 1562500
\(x^2\) = (1250)2
\(\left[{}\begin{matrix}x=-12500\\x=12500\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -12500; 12500}
Ta có: \(\dfrac{x+4}{2021}+\dfrac{x+3}{2022}=\dfrac{x+2}{2023}+\dfrac{x+1}{2024}\)
=>\(\left(\dfrac{x+4}{2021}+1\right)+\left(\dfrac{x+3}{2022}+1\right)-\left(\dfrac{x+2}{2023}+1\right)-\left(\dfrac{x+1}{2024}+1\right)=0\)
=>\(\dfrac{x+2025}{2021}+\dfrac{x+2025}{2022}-\dfrac{x+2025}{2023}-\dfrac{x+2025}{2024}=0\)
=>x+2025=0
=>x=-2025
\(\dfrac{1}{3}=\dfrac{2}{6}< \dfrac{2}{5}\)
Vì 2/6<2/5 nên Tuấn cho Hùng số viên bi nhiều hơn của Dũng
a) Tứ giác `ABCD` có `hat{A} + hat{B} + hat{C} + hat{D} = 360^o`
Do chúng lần lượt tỉ lệ với `2;3;6;7`
`=> hat{A}/2 = hat{B}/3 = hat{C}/6 = hat{D}/7`
Áp dụng t/chất dãy tỉ số bằng nhau:
`=> hat{A}/2 = hat{B}/3 = hat{C}/6 = hat{D}/7 = (hat{A} + hat{B} + hat{C} + hat{D})/(2+3+6+7) = (360^o)/18 = 20^o`
`-> {(hat{A} = 20^o . 2 = 40^o),(hat{B} = 20^o 3 = 60^o),(hat{C} = 20^o . 6 = 120^o),(hat{D} = 20^o . 7 = 140^o):}`
Vậy ...
a) Ta có:
`84 = 2^2 . 3 . 7`
`108 = 2^2 . 3^3`
`=> UCLN(84;108) = 2^2 . 3 = 12`
`=> UC(84;108) = Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}`
Do `35 vdots x; 105 vdots x`
`=> x in UC{35;105)`
Mà `105 vdots 35`
`=> x in Ư(35) = {1;5;7;35}`
Mà `x > 5 -> x in {7;35}`
Vậy ...
`b) x vdots 10; x vdots 15`
`=> x in BC(10;15)`
Ta có:
`10 = 2 . 5`
`15 = 3.5`
`=> BCN``N(10;15) = 2.3.5 = 30`
`=> x in B(30) = {0;30;60;90;120;...}`
Mà `x < 100 -> x in {0;30;60;90}`
M = 3\(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028
M = 2\(x^2\) + \(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028
M = (2\(x^2\) - 8\(x\) + 8) + (\(x^2\) + 2\(xy\) + y2) + 2020
M = 2.(\(x^2\) - 4\(x\) + 4) + (\(x+y\))2 + 2020
M = 2.(\(x-2\))2 + (\(x+y\))2 + 2020
Vì (\(x-2\))2 ≥ 0 ∀ \(x\); 2.(\(x-2\))2 ≥ 0; (\(x+y\))2 \(\ge\) 0 \(\forall\) \(x;y\)
⇒ 2.(\(x-2\))2 + (\(x+y\))2 + 2020 ≥ 2020
Vậy Mmin = 2020 khi \(\left\{{}\begin{matrix}x-2=0\\x+y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=2\\y=-x\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
Vậy giái trị nhỏ nhất của biểu thức M là 2020 xảy ra khi (\(x;y\))=(2; -2)