K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
1 tháng 3 2021

ta có \(\frac{10n^2+9n+4}{20n^2+20n+9}\) là phân số tối giản khi

\(\left(10n^2+9n+4,20n^2+20n+9\right)=1\)

mà \(\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)=2n+1\)

\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(10n^2+9n+4,20n^2+20n+9\right)\)

mà \(\left(10n^2+9n+4\right)-\left(2n+1\right)\left(5n+2\right)=2\)

\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(2n+1,2\right)=1\)

Vậy \(\left(10n^2+9n+4,20n^2+20n+9\right)=1\) hay phân số đã cho là tối giản

1 tháng 3 2021

Gọi \(ƯCLN\left(10n^2+9n+4;20n^2+20n+4\right)=d\)\(\left(d\ge1\right)\)

Ta có : \(\left(10n^2+9n+4\right)⋮d\)và \(\left(20n^2+20n+9\right)⋮d\)

Hay \(\left[2\left(10n^2+9n+4\right)+2n+1\right]⋮d\)

\(\Rightarrow\left(2n+1\right)⋮d\left(1\right)\)

Mặt khác : \(\left(10n^2+9n+4\right)⋮d\Rightarrow\left(10n^2+9n+2\right)+2⋮d\)\(\Rightarrow\left(5n+2\right)\left(2n+1\right)+2⋮d\)\(\)

Vì \(\left(2n+1\right)⋮d\Rightarrow\left(5n+2\right)\left(2n+1\right)⋮d\)

Mà \(\left(5n+2\right)\left(2n+1\right)+2⋮d\)

\(\Rightarrow2⋮d\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\). \(\Rightarrow\) ƯCLN (\(10n^2+9n+4;20n^2+20n+9\)) =1

\(\Rightarrow\)Phân số trên tối giản

\(\)

1 tháng 3 2021

Ta có an = 1 + 2 + 3 + ... + n = n(n + 1)/2

an + 1 = 1 + 2 + 3 + ... + n + n + 1 = (n + 1)(n + 2)/2

=> an + an + 1 = \(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{2\left(n+1\right)^2}{2}=\left(n+1\right)^2\)

=> an + an + 1 là số chính phương (đpcm)

28 tháng 2 2021

 5 và 12 nha bạn ơi. bộ ba pytago chứ mình không biết làm.

1 tháng 3 2021

Gọi một cạnh góc vuông là x (x>0)
=> cạnh còn lại là : 17 - x
=> Phương trình theo định lý Py-ta-go là :
x^2 + (17 - x)^2 = 13^2
<=> x^2 + 289 - 34x + x^2 = 169
<=> 2x^2 - 34x + 120 = 0
<=> 2x^2 - 10x - 24x + 120 = 0
<=> 2x(x - 5) - 24(x - 5) = 0
<=> (2x - 24) = 0 hoặc x - 5 = 0
=> x = 12 hoặc x = 5
Vậy độ dài 2 cạnh góc vuông là : 12 cm và 5 cm
hoặc : 5 cm và 12 cm

28 tháng 2 2021
Giải: Đổi: 10phút = 1/6giờ 24phút = 0,4giờ Gọi vận tốc đi bộ là x (km/h, x>0) => Vận tốc của xe đạp là x+7(*) => Quãng đường đi bộ là: 0,4x(*) => Quãng đường đi xe đạp là: 1/6(*)(x+7) Vì quãng đường đi xe đạp bằng quãng đường đi bộ nên ta có phương trình: 0,4x = 1/6(x+7) <=> 0,4x = 1/6x + 7/6 <=> 0,4x - 1/6x = 7/6 <=> 7/30x = 7/6 <=> x = 5 => Quãng đường từ nhà đến trường là: x = 5.0,4 = 2(km) Vậy quãng đường từ nhà đến trường dài 2km. (*) Đoạn này mình dùng nhiều dấu "=>" quá, vậy nên tùy theo cách thầy(cô) dạy mà bạn thay đổi nhé.
28 tháng 2 2021
Ầy, sao nó liền nhau vậy ta. :V Có gì bạn chịu khó nhìn xíu nhá. Không thì tự nghĩ rồi giải cũng được. (・∀・)
28 tháng 2 2021

\(\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}\)

ĐKXĐ : x ≠ 1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 6

pt <=> \(\frac{x^2-5x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{3x^2-9x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)

<=> \(\frac{6x^2-22x+18}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)

=> \(\left(x-6\right)\left(6x^2-22x+18\right)=6\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

(bạn tự khai triển rút gọn nhé)

<=> \(6x^3-58x^2+150x-108=6x^3-36x^2+66x-36\)

<=>\(6x^3-58x^2+150x-108-6x^3+36x^2-66x+36=0\)

<=> \(-22x^2+84x-72=0\)

<=> \(11x^2-42x+36=0\)

(pt này lên lớp 9 mới học nên mình dừng tại đây)

4 tháng 3 2021

Gọi độ dài ba cạnh của tam giác đó lần lượt là x,y,z.Theo đề bài ta có :

x : y : z = 3 : 4 : 5 hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)

=> x=  5.3 = 15,y = 5.4 = 20,z = 5.5 = 25

Vậy độ dài của ba cạnh lần lượt là 15cm,20cm,25cm

18 tháng 11 2021

Gọi độ dài 3 cạnh của tam giác lần lượt là \(a,b,c\inℕ^∗;a,b,c\left(cm\right)\)

Do độ dài 3 cạnh tỉ lệ với \(3,4,5\)

\(\Rightarrow\)\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Do chu vi của tam giác là \(60cm\)

\(\Rightarrow\)\(a+b+c=60\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)

Do đó:

\(\frac{a}{3}=5\Rightarrow a=5.3=15\)

\(\frac{b}{4}=5\Rightarrow b=5.4=20\)

\(\frac{c}{5}=5\Rightarrow c=5.5=25\)

Vậy độ dài lần lượt của 3 cạnh tam giác lần lượt là: \(15,20,25\)