Tìm đa thức A biết 2x-1/A=1-4x^2/3x+6x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2006^{2024}=\left(7.286+4\right)^{2024}\) \(=7A+4^{2024}\). Do đó ta chỉ cần tìm số dư của \(4^{2024}\) khi chia cho 7.
Để ý rằng: \(4^0\equiv1\left[7\right]\); \(4^1\equiv4\left[7\right]\); \(4^2\equiv2\left[7\right]\); \(4^3\equiv1\left[7\right]\); \(4^4\equiv4\left[7\right]\); \(4^5\equiv2\left[7\right]\)
Do đó ta nảy sinh dự đoán rằng \(4^{3k+2}\equiv2\left[7\right]\left(k\inℕ\right)\). Ta sẽ chứng minh điều này bằng phương pháp quy nạp,
Thật vậy, với \(k=0\) thì khẳng định đúng (theo như trên)
Giả sử khẳng định đúng đến \(k=l\ge0\), khi đó \(4^{3l+2}\equiv2\left[7\right]\). Ta cần chứng minh khẳng định đúng với \(k=l+1\), tức là cm \(4^{3\left(l+1\right)+2}\equiv2\left[7\right]\)
Thật vậy, ta có \(4^{3\left(l+1\right)+2}\equiv4^{3l+3+2}\equiv64.4^{3l+2}\equiv1.2\equiv2\left[7\right]\)
Vậy khẳng định đúng với \(k=l+1\Rightarrow4^{3k+2}\equiv2\left[7\right]\)
Vì vậy \(4^{2024}=4^{2022+2}=4^{3.674+2}\equiv2\left[7\right]\)
Vậy số dư của phép chia \(2006^{2024}\) cho 7 là 2.
a: Xét ΔNHE vuông tại E và ΔNMH vuông tại H có
\(\widehat{HNE}\) chung
Do đó: ΔNHE~ΔNMH
=>\(\dfrac{NH}{NM}=\dfrac{NE}{NH}\)
=>\(NH^2=NE\cdot NM\left(1\right)\)
Xét ΔHFN vuông tại F và ΔPHN vuông tại H có
\(\widehat{HNF}\) chung
Do đó: ΔHFN~ΔPHN
=>\(\dfrac{NH}{NP}=\dfrac{NF}{NH}\)
=>\(NH^2=NP\cdot NF\left(2\right)\)
Từ (1),(2) suy ra \(NE\cdot NM=NP\cdot NF\)
b: Ta có: \(NE\cdot NM=NP\cdot NF\)
=>\(\dfrac{NE}{NP}=\dfrac{NF}{NM}\)
Xét ΔNEF và ΔNPM có
\(\dfrac{NE}{NP}=\dfrac{NF}{NM}\)
\(\widehat{ENF}\) chung
Do đó: ΔNEF~ΔNPM
=>\(\widehat{NEF}=\widehat{NPM}\)
c: ta có: \(\widehat{NEF}=\widehat{NPM}\)
mà \(\widehat{NEF}=\widehat{KEM}\)(hai góc đối đỉnh)
nên \(\widehat{KEM}=\widehat{KPN}\)
Xét ΔKEM và ΔKPF có
\(\widehat{KEM}=\widehat{KPF}\)
\(\widehat{EKM}\) chung
Do đó: ΔKEM~ΔKPF
=>\(\dfrac{KE}{KP}=\dfrac{KM}{KF}\)
=>\(KE\cdot KF=KM\cdot KP\)
Pt: \(\dfrac{3}{x^2+x+1}+\dfrac{4}{x^2+x+2}-\dfrac{6}{x^2+x+4}=1\) (*)
ĐK: \(\left\{{}\begin{matrix}x^2+x+1\ne0\\x^2+x+2\ne0\\x^2+x+4\ne0\end{matrix}\right.\)(luôn đúng)
Đặt: \(x^2+x+2=t\ge\dfrac{7}{4}\)
(*) trở thành:
\(\dfrac{3}{t-1}+\dfrac{4}{t}-\dfrac{6}{t+2}=1\)
\(\Leftrightarrow\dfrac{3t\left(t+2\right)}{t\left(t-1\right)\left(t+2\right)}+\dfrac{4\left(t-1\right)\left(t+2\right)}{t\left(t-1\right)\left(t+2\right)}-\dfrac{6t\left(t-1\right)}{t\left(t-1\right)\left(t+2\right)}=1\)
\(\Leftrightarrow3t\left(t+2\right)+4\left(t-1\right)\left(t+2\right)-6t\left(t-1\right)=t\left(t-1\right)\left(t+2\right)\)
\(\Leftrightarrow3t^2+6t+4\left(t^2+t-2\right)-6t^2+6t=t\left(t^2+t-2\right)\)
\(\Leftrightarrow-3t^2+12t+4t^2+4t-8=t^3+t^2-2t\)
\(\Leftrightarrow t^2+16t-8=t^3+t^2-2t\)
\(\Leftrightarrow t^3-18t+8=0\)
\(\Leftrightarrow\left(t-4\right)\left(t^2+4t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\left(tm\right)\\t=\sqrt{6}-2\left(ktm\right)\\t=-\sqrt{6}-2\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy: ...
Có tất cả số cây bút là: \(5+3+4+2=14\) (cây)
Có 2 cây bút tím
\(\Rightarrow P\left(A\right)=\dfrac{2}{14}=\dfrac{1}{7}\)
Tổng số cây bút màu cam và màu xanh là: \(3+4=7\) (cây)
\(\Rightarrow P\left(B\right)=\dfrac{7}{14}=\dfrac{1}{2}\)
Tổng số cây bút không phải màu vàng là: \(14-5=9\) (cây)
\(\Rightarrow P\left(C\right)=\dfrac{9}{14}\)
Có 5 cây bút màu vàng
\(\Rightarrow P\left(D\right)=\dfrac{5}{14}\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC~ΔHAC
=>\(\dfrac{CA}{CH}=\dfrac{CB}{CA}\)
=>\(CA^2=CH\cdot CB\)
b: Xét ΔAHE vuông tại E và ΔCBA vuông tại A có
\(\widehat{HAE}=\widehat{BCA}\left(=90^0-\widehat{HBA}\right)\)
Do đó:ΔAHE~ΔCBA
=>\(\dfrac{AH}{BC}=\dfrac{HE}{AB}\)
\(\dfrac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\\ =\dfrac{\left(x^3+x^2\right)-\left(2x^2+2x\right)-\left(8x+8\right)}{x^2\left(x-4\right)+5\left(x-4\right)}\\ =\dfrac{x^2\left(x+1\right)-2x\left(x+1\right)-8\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+1\right)\left(x^2-2x-8\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+1\right)\left[\left(x^2-4x\right)+\left(2x-8\right)\right]}{\left(x^2+5\right)\left(x-4\right)}\)
\(=\dfrac{\left(x+1\right)\left[x\left(x-4\right)+2\left(x-4\right)\right]}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+1\right)\left(x-4\right)\left(x+2\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+1\right)\left(x+2\right)}{x^2+5}\left(x\ne4\right)\)