CHo \(a^3+b^3+c^3=1.\)Chứng minh: \(\frac{a^2}{\sqrt{1-a^2}}+\frac{b^2}{\sqrt{1-b^2}}+\frac{c^2}{\sqrt{1-c^2}}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài làm:
a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ
=> \(1+\sqrt{2}\) vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ
b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ
=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ
=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ

\(\Rightarrow B^2=\left(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\right)^2\)
\(=\left(a+2\sqrt{a-1}\right)+2\sqrt{\left(a+2\sqrt{a-1}\right)\left(a-2\sqrt{a-1}\right)}+\left(a-2\sqrt{a-1}\right)\)
\(=2a+2\sqrt{a^2-4\left(a-1\right)}=2\left(a+\sqrt{a^2-4a+4}\right)=2\left[a+\sqrt{\left(a-2\right)^2}\right]\)
\(=2\left(a+\left|a-2\right|\right)\)
\(\Rightarrow B=\sqrt{2\left(a+\left|a-2\right|\right)}\)

\(VP=\frac{AH.AK+CH.CE+BH.BD+CH.CE-\left(AH.AK+BH.BD\right)}{BH.BD+CH.CE+AH.AK+BH.BD-\left(AH.AK+CH.CE\right)}\)
\(=\frac{2CH.CE}{2BH.BD}=\frac{CK.CB}{BK.BC}=\frac{KC}{KB}\) (DPCM)

\(p^2+2q^2=41\Rightarrow41-2q^2=p^2\Rightarrow p^2\) là số lẻ
=> p=2k+1 (k thuộc N*), thay vào=> q2=2k(k+1)-20
=> q chẵn mà q là số nguyên tối nên q=2
=> p2=49 => p=7
để ý và dùng cauchy ngược là oke
\(\sqrt{1-a^2}=\sqrt{\left(1-a\right)\left(1+a\right)}\le\frac{\left(1-a\right)+\left(1+a\right)}{2}=1\)
đề này có vấn đề thì phải, ai mò được cho mình xin cái dấu "=" nào