Cho biểu thức: A=\(\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2}-2x}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2}-2x}\\ \)
a)Tìm điều kiện xác định của biểu thức A
b) Rút gọn biểu thức A
c)Tìm một giá trị của x để A<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2=t\left(t\ge0\right)\)
\(\Leftrightarrow t^2-16t+32=0\)
\(\Delta=\left(-16\right)^2-4.32=256-128=128>0\)
\(t_1=\frac{16-\sqrt{128}}{2}=8-4\sqrt{2};t_2=\frac{16+\sqrt{128}}{2}=8+4\sqrt{2}\)
Theo bài ra ta có :
\(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}-\sqrt{3\left(2-\sqrt{2+\sqrt{3}}\right)}\)
tịt lun, cái pt căn này chill quá
๖²⁴ʱ๖ۣۜTɦủү❄吻༉ Mơn Bạn nha .
P/s : làm nháp thử mn sửa giúp nha ( thực ra em cũng chả hiểu cái gì cả T_T )
Ta có :
\(\left(x_0\right)^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)
\(\Rightarrow\left(\frac{8-\left(x_0\right)^2}{2}\right)^2=2+\sqrt{3}+3\left(2-\sqrt{3}\right)+2\sqrt{3\left(4-3\right)}=8\)
\(\Rightarrow64-16\left(x_0\right)^2+\left(x_0\right)^4=32\)
\(\Rightarrow\left(x_0\right)^4-16\left(x_0\right)^2+32=0\left(đpcm\right)\)
Đặt: \(A=\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\)
=> \(A^2=\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
=> \(A^2=2\sqrt{5}+2\sqrt{5-4}\)
=> \(A^2=2\sqrt{5}+2\)
=> \(A^2=2\left(\sqrt{5}+1\right)\)
=> \(A=\sqrt{2\left(\sqrt{5}+1\right)}\)
=> \(\frac{A}{\sqrt{\sqrt{5}+1}}=\frac{\sqrt{2\left(\sqrt{5}+1\right)}}{\sqrt{\sqrt{5}+1}}=\sqrt{2}\)
Đặt: \(B=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> \(VT=\frac{A}{\sqrt{\sqrt{5}+1}}-B=\sqrt{2}-\left(\sqrt{2}-1\right)=\sqrt{2}-\sqrt{2}+1=1\)
VẬY KẾT QUẢ CỦA PHÉP TÍNH = 1.
gt <=> \(\sqrt{x-1}-\sqrt{y-1}+\left(x-y\right)\left(x+y\right)=0\)
<=> \(\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right)\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\)
<=> \(\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\)
<=> \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\)
<=> \(\left(x-y\right)\left(x+y+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}\right)=0\) (1)
Mà theo ĐKXĐ thì: \(x;y\ge1\)
=> \(x+y\ge2>0\)
Mà \(\frac{1}{\sqrt{x-1}+\sqrt{y-1}}>0\)
=> \(x+y+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}>0\) (2)
Từ (1) và (2) thì:
=> \(x=y\)
VẬY TA CÓ ĐPCM.
gt <=> \(\left(x+\sqrt{x^2+2}\right)\left(\left(y-1\right)+\sqrt{\left(y-1\right)^2+2}\right)=2\)
Đặt \(x=a;y-1=b\)
=> gt trở thành: \(\left(a+\sqrt{a^2+2}\right)\left(b+\sqrt{b^2+2}\right)=2\) (1)
Lần lượt có: \(\left(\sqrt{a^2+2}+a\right)\left(\sqrt{a^2+2}-a\right)=2\) (2)
Và \(\left(\sqrt{b^2+2}+b\right)\left(\sqrt{b^2+2}-b\right)=2\) (3)
TỪ (1); (2); (3) => \(\hept{\begin{cases}\left(\sqrt{a^2+2}-a\right)=\sqrt{b^2+2}+b\\\sqrt{b^2+2}-b=\sqrt{a^2+2}+a\end{cases}}\)
Ta cộng từng vế của 2 pt trên lại, ta được:
=> \(\sqrt{a^2+2}+\sqrt{b^2+2}-\left(a+b\right)=\sqrt{a^2+2}+\sqrt{b^2+2}+\left(a+b\right)\)
<=> \(2\left(a+b\right)=0\)
<=> \(a+b=0\)
Thay lại: a = x; b = y - 1
=> \(x+y-1=0\)
<=> \(x+y=1\)
=> \(x^3+y^3+3xy=x^3+y^3+3xy.1=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Vậy \(x^3+y^3+3xy=1\)
TA CÓ ĐPCM
CÂU 1:
\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)
\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)
\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)
\(A=2\sqrt{3}\)
a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9
Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\left(\sqrt{x}+1\right)}{x-5\sqrt{x}+6}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-4+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{2}{\sqrt{x}-3}\)
b) Ta có: P < -1 <=> \(\frac{2}{\sqrt{x}-3}< -1\) <=> \(\frac{2}{\sqrt{x}-3}+1< 0\)
<=> \(\frac{2+\sqrt{x}-3}{\sqrt{x}-3}< 0\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}-3}< 0\)
TH1: \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-3>0\end{cases}}\) <=> \(\hept{\begin{cases}x< 1\\x>9\end{cases}}\)(loại)
TH2: \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-3< 0\end{cases}}\) <=> \(\hept{\begin{cases}x>1\\x< 9\end{cases}}\)
Kết hợp vs đk => S = {x|1 < x < 9 và x \(\ne\)4}
c) Để P nguyên <=> 2 \(⋮\)\(\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Lập bảng: tự làm
@Edogawa Conan phân số thứ 2 bạn bị sai rồi \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=x+2\sqrt{x}-3\)
trước phân số là dấu "-" phải đổi dấu
a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4
Ta có: P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)
P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-\left(x+6\sqrt{x}+\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
P = \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)
b) Với x \(\ge\)0 và x \(\ne\)4, ta có:
P > -1 <=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}>-1\)
<=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}+1>0\)
<=> \(\frac{\sqrt{x}-2-\sqrt{x}-6}{\sqrt{x}-2}>0\)
<=> \(\frac{-8}{\sqrt{x}-2}>0\)
Do -8 < 0 => \(\sqrt{x}-2< 0\) <=> \(\sqrt{x}< 2\)<=> \(x< 4\)
mà x \(\ge0\) => 0 \(\le\)x \(< \)4
c)Với x \(\ge\)0 và x \(\ne\)4
Để P \(\in\)Z <=> -8 \(-8⋮\sqrt{x}-2\)
<=> \(\sqrt{x}-2\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Do \(\sqrt{x}\ge0\) <=> \(\sqrt{x}-2\ge-2\) => \(\sqrt{x}-2\in\left\{-2;-1;1;2;4;8\right\}\)
Lập bảng:
\(\sqrt{x}-2\) | -2 | -1 | 1 | 2 | 4 | 8 |
x | 0 | 1 | 9 | 16 | 36 | 100 |
Vậy ....
Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!
a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
<=> \(A^3=4+3\sqrt[3]{4-5}.A\)
<=> \(A^3=4-3A\)
<=> \(A^3+3A-4=0\)
<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)
Có: \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
=> \(A-1=0\)
<=> \(A=1\)
=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
VẬY TA CÓ ĐPCM
\(\sqrt{13-4\sqrt{3}}-\sqrt{37-20\sqrt{3}}\)
\(=\sqrt{12-4\sqrt{3}+1}-\sqrt{25-20\sqrt{3}+12}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}-\sqrt{\left(5-2\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{3}-1\right|-\left|5-2\sqrt{3}\right|\)
\(=2\sqrt{3}-1-5+2\sqrt{3}\)
\(=4\sqrt{3}-6\)