❤Mn giúp mik với ạ❤
CM : (√a -1) ( a+ √a +1 ) = a√a -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
=> \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{4+2\sqrt{3}}\)
=> \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
=> \(A=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)
=> \(A=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)
=> \(A=4\sqrt{3}-8+6-4\sqrt{3}\)
=> \(A=-8+6=-2\)
VẬY \(A=-2\)
\(B=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{2}.\sqrt{4-\sqrt{15}}\)
=> \(B=\sqrt{8-2\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
=> \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\left(4+\sqrt{15}\right)\)
=> \(B=\left(\sqrt{5}-\sqrt{3}\right)^2\left(4+\sqrt{15}\right)\)
=> \(B=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)
=> \(B=32+8\sqrt{15}-8\sqrt{15}-30\)
=> \(B=2\)
VẬY \(B=2\)
\(B=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
\(\sqrt{x}-3⋮\sqrt{x}-2\Leftrightarrow\sqrt{x}-2-1⋮\sqrt{x}-2\)
\(\Leftrightarrow-1⋮\sqrt{x}-2\Leftrightarrow\sqrt{x}-2\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-2\) | 1 | -1 | 2 | -2 |
x | 9 | 1 | 16 | 0 |
\(B=\frac{\sqrt{x}-3}{\sqrt{x}-2}\left(x\ge0\right)\)
để B đạt giá trị âm thì \(\sqrt{x}-3\)và \(\sqrt{x}-2\)phải trái dấu nhau
ta thấy \(\sqrt{x}-3< \sqrt{x}-2\)\(\Rightarrow\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 9\\x>4\end{cases}\Leftrightarrow}4< x< 9}\)
vậy 4<x<9 thì B đạt giá trị âm
Ta có: (ÁP DỤNG BĐT CAUCHY SẼ ĐƯỢC):
\(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)
Và: \(b^4+a^2\ge2\sqrt{a^2b^4}=2ab^2\)
=> \(VT\le\frac{a}{2a^2b}+\frac{b}{2ab^2}\)
=> \(VT\le\frac{1}{2ab}+\frac{1}{2ab}\)
=> \(VT\le\frac{2}{2ab}=\frac{1}{ab}\)
=> VẬY TA CÓ ĐPCM.
Dấu "=" xảy ra <=> \(a=b\)
Thay \(\left(a,b,c\right)=\left(2,5,10\right)\) vao gt ta thay ko thoa man
Sua lai de : CMR \(a^3+b^3+c^3-3abc⋮a+b+c\)
CM:
\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)⋮\left(a+b+c\right)\)
Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)
- Chứng minh A chia hết cho 2:
+) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2
+) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2
- Chứng minh A chia hết cho 3:
+) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3
+) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:
+) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5
+) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5
Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)
\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7
\(\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)=\left(\sqrt{a}\right)^3-1=\sqrt{a^3}-1=a\sqrt{a}-1\)