K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)

\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)

\(\Leftrightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow2x+4=2x+3\)

\(\Leftrightarrow0x=-1\)(vô nghiệm)

Vậy phương trình vô nghiệm.

7 tháng 3 2021

\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)

\(\Leftrightarrow2x+7=-10\)

\(\Leftrightarrow2x=-17\)

\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)

7 tháng 3 2021

2+4+6=1/2 24

7 tháng 3 2021

Gọi vận tốc xe máy là x ( > 0, km/h )

vận tốc ô tô là x + 10 km/h 

Đổi : 30 phút = 0,5 giờ

Quãng đường AB dài 120 km ta có phương trình sau : 

\(0,5x+0,5\left(x+10\right)=120\)

\(\Leftrightarrow x+5=120\Leftrightarrow x=115\)km/h 

vận tốc ô tô là : \(115+10=125\)km/h

Vậy vận tốc xe máy là 115 km/h ; vận tốc ô tô là 125 km/h

7 tháng 3 2021

A B C 10 20 D 5

Xét tam giác ABD và tam giác ACB ta có ; 

^BAD = ^BAC = 900 

\(\frac{AB}{AC}=\frac{AD}{AB}=\frac{10}{20}=\frac{5}{10}=\frac{1}{2}\)

Vậy tam giác ABD ~ tam giác ACB ( c.g.c )

=> ^ABD = ^ACB ( 2 góc tương ứng )

7 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

7 tháng 3 2021

ĐKXĐ : \(x\ne5;x\ne-6\)

Ta có phương trình \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=> \(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

<=> \(\frac{x^2+12x+36+x^2-10x+25}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

=> \(\frac{2x^2+2x+61}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

=> 2x2 + 2x + 61 = 2x2 + 23x + 61

<=> 21x = 0

<=> x = 0 (tm)

Vậy x = 0 là nghiệm phương trình

7 tháng 3 2021

\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)ĐK : \(x\ne5;-6\)

\(\Leftrightarrow\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

\(\Rightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

\(\Leftrightarrow2x^2+2x+61=2x^2+23x+61\Leftrightarrow2x-23x=0\)

\(\Leftrightarrow-21x=0\Leftrightarrow x=0\)( tmđk )

Vậy tập nghiệm của phương trình là S= { 0 }