Tìm GTNN của A=2/6x-5-9x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEH vuông tại E và ΔAHC vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHC
b: Ta có: ΔAEH vuông tại E
=>\(EH^2+EA^2=AH^2\)
=>\(EH^2=10^2-6^2=64=8^2\)
=>EH=8(cm)
Xét ΔAHE có AM là phân giác
nên \(\dfrac{MH}{AH}=\dfrac{ME}{AE}\)
=>\(\dfrac{MH}{10}=\dfrac{ME}{6}\)
=>\(\dfrac{MH}{5}=\dfrac{ME}{3}\)
mà MH+ME=EH=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MH}{5}=\dfrac{ME}{3}=\dfrac{MH+ME}{5+3}=\dfrac{8}{8}=1\)
=>MH=5(cm); ME=3(cm)
c: Xét ΔHEC có HN là phân giác
nên \(\dfrac{EN}{NC}=\dfrac{EH}{HC}\left(1\right)\)
Xét ΔAHE có AM là phân giác
nên \(\dfrac{EM}{MH}=\dfrac{EA}{AH}\left(2\right)\)
Xét ΔEHA vuông tại E và ΔHCA vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔEHA~ΔHCA
=>\(\dfrac{EA}{HA}=\dfrac{EH}{HC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{EM}{MH}=\dfrac{EN}{NC}\)
Xét ΔEHC có \(\dfrac{EM}{MH}=\dfrac{EN}{NC}\)
nên MN//HC
=>MN//BC
mà AH\(\perp\)BC
nên HA\(\perp\)MN
Xét ΔAHN có
NM,HE là các đường cao
NM cắt HE tại M
Do đó: M là trực tâm của ΔAHN
=>AM\(\perp\)HN
Gọi số tự nhiên ban đầu là X
Viết thêm chữ số 2 vào bên trái và một chữ số 2 vào bên phải thì số mới sẽ là 10X+2000+2=10X+2002
Số mới gấp 153 lần số ban đầu nên ta có:
10X+2002=153X
=>143X=2002
=>\(X=\dfrac{2002}{143}=14\left(nhận\right)\)
Vậy: Số cần tìm là 14
Gọi độ dài quãng đường AB là x(km)
(Điều kiện: x>0)
Thời gian dự kiến ban đầu là \(\dfrac{x}{40}\left(giờ\right)\)
Thời gian đi nửa quãng đường ban đầu là \(\dfrac{x}{2}:40=\dfrac{x}{80}\left(giờ\right)\)
vận tốc trên nửa quãng đường còn lại là 40+10=50(km/h)
Thời gian đi nửa quãng đường còn lại là \(\dfrac{x}{2}:50=\dfrac{x}{100}\left(giờ\right)\)
Tổng thời gian là 11h30p-6h30p-30p=4h30p=4,5(giờ)
Theo đề, ta có phương trình:
\(\dfrac{x}{80}+\dfrac{x}{100}=4,5\)
=>\(\dfrac{9x}{400}=4,5\)
=>\(9x=400\cdot4,5=1800\)
=>\(x=\dfrac{1800}{9}=200\left(nhận\right)\)
vậy: Quãng đường AB là 200km
a: \(P=\dfrac{x}{x-2}+\dfrac{2-x}{x+2}+\dfrac{8-6x}{x^2-4}\)
\(=\dfrac{x}{x-2}-\dfrac{x-2}{x+2}+\dfrac{8-6x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x\left(x+2\right)-\left(x-2\right)^2+8-6x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x-x^2+4x-4+8-6x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{x^2-4}\)
b: Thay x=3 vào P, ta được:
\(P=\dfrac{4}{3^2-4}=\dfrac{4}{5}\)
Thay x=-1/2 vào P, ta được:
\(P=\dfrac{4}{\left(-\dfrac{1}{2}\right)^2-4}=\dfrac{4}{\dfrac{1}{4}-4}=4:\dfrac{-15}{4}=\dfrac{-16}{15}\)
c: Để P là số nguyên thì \(4⋮x^2-4\)
=>\(x^2-4\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x^2\in\left\{5;3;6;2;8;0\right\}\)
mà x nguyên
nên x^2=0
=>x=0(nhận)
Gọi thời gian người 1 và người 2 hoàn thành công việc khi làm một mình lần lượt là x(ngày) và y(ngày)
(ĐK: x>0; y>0)
Trong 1 ngày, người 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)
Trong 1 ngày, người 2 làm được \(\dfrac{1}{y}\left(côngviệc\right)\)
Trong 1 ngày, hai người làm được \(\dfrac{1}{4}\left(côngviệc\right)\)
Do đó, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(1\right)\)
Trong 2 ngày, người 1 làm được \(\dfrac{2}{x}\)(công việc)
Trong 2+6=8 ngày, người 2 làm được \(\dfrac{8}{y}\)(công việc)
Vì làm được 2 ngày thì người 1 chuyển đi, người 2 làm tiếp trong 6 ngày thì xong công việc nên ta có: \(\dfrac{2}{x}+\dfrac{8}{y}=1\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{2}{x}+\dfrac{8}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{2}\\\dfrac{2}{x}+\dfrac{8}{y}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{6}{y}=-\dfrac{1}{2}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\\dfrac{1}{x}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)(nhận)
Vậy: thời gian người 1 và người 2 hoàn thành công việc khi làm một mình lần lượt là 6 ngày và 12 ngày
Giải:
Trong một ngày hai người cùng làm được:
1 : 4 = \(\dfrac{1}{4}\) (công việc)
Hai ngày hai người cùng làm được:
\(\dfrac{1}{4}\) x 2 = \(\dfrac{1}{2}\) (công việc)
Trong 6 ngày người thứ hai làm một mình được:
1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) (công việc)
Trong một ngày người thứ hai làm một mình được:
\(\dfrac{1}{2}\) : 6 = \(\dfrac{1}{12}\) (công việc)
Trong một ngày người thứ nhất làm một mình được:
\(\dfrac{1}{4}\) - \(\dfrac{1}{12}\) = \(\dfrac{1}{6}\) (công việc)
Người thứ nhất làm một mình sẽ hoàn thành công việc sau:
1 : \(\dfrac{1}{6}\) = 6 (ngày)
Kết luận: người thứ nhất làm một mình sẽ xong công việc sau 6 ngày
1:
a: ĐKXĐ: \(x\notin\left\{-2;2;0\right\}\)
\(\dfrac{0,5x^2+x+2}{1+0,5x}:\dfrac{x^3-8}{x+2}+\dfrac{2}{x\left(2-x\right)}\)
\(=\dfrac{0,5\left(x^2+2x+4\right)}{0,5\left(x+2\right)}\cdot\dfrac{x+2}{\left(x-2\right)\left(x^2+2x+4\right)}-\dfrac{2}{x\left(x-2\right)}\)
\(=\dfrac{1}{x-2}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}=\dfrac{1}{x}\)
b: \(P< =\dfrac{1}{1-x}\)
=>\(\dfrac{1}{x}< =\dfrac{1}{1-x}\)
=>\(\dfrac{1}{x}-\dfrac{1}{1-x}< =0\)
=>\(\dfrac{1-x-x}{x\left(1-x\right)}< =0\)
=>\(\dfrac{2x-1}{x\left(x-1\right)}< =0\)
TH1: \(\left\{{}\begin{matrix}2x-1< =0\\x\left(x-1\right)>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x< 0\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< 0\\x\ne-2\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}2x-1>=0\\x\left(x-1\right)< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\0< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< =x< 1\)
a: Xác suất thực nghiệm của biến cố "Mặt xuất hiện của xúc xắc là mặt 4 chấm" là: \(\dfrac{22}{40}=\dfrac{11}{20}\)
b: Xác suất thực nghiệm của biến cố "Mặt xuất hiện của xúc sắc là mặt 6 chấm" là \(\dfrac{10}{18}=\dfrac{5}{9}\)
c: Xác suất thực nghiệm của biến cố "Mặt xuất hiện của xúc sắc là mặt 1 chấm" là \(\dfrac{18}{40}=\dfrac{9}{20}\)
d: Xác suất thực nghiệm của biến cố "Mặt xuất hiện của xúc sắc là mặt 3 chấm" là \(\dfrac{14}{20}=\dfrac{7}{10}\)
e: Xác suất thực nghiệm của biến cố "Mặt xuất hiện của xúc sắc là mặt 5 chấm" là \(\dfrac{15}{45}=\dfrac{1}{3}\)
f: Xác suất thực nghiệm của biến cố "Mặt xuất hiện của xúc sắc là mặt 2 chấm" là \(\dfrac{6}{24}=\dfrac{1}{4}\)
a.
Xét hai tam giác AHB và CAB có:
\(\left\{{}\begin{matrix}\widehat{B}-chung\\\widehat{AHB}=\widehat{CAB}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta AHB\sim\Delta CAB\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BC\)
b.
Do H là trung điểm BM, trong tam giác ABM có AH vừa là đường cao đồng thời là trung tuyến
\(\Rightarrow\Delta ABM\) cân tại A \(\Rightarrow\widehat{ABH}=\widehat{AMH}\)
Mà \(\widehat{AMH}=\widehat{CMK}\) (đối đỉnh)
\(\Rightarrow\widehat{ABH}=\widehat{CMK}\)
Xét hai tam giác ABH và CMK có:
\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{CMK}\left(cmt\right)\\\widehat{AHB}=\widehat{CKM}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta ABH\sim\Delta CMK\left(g.g\right)\)
c.
Xét hai tam giác AMH và CMK có:
\(\left\{{}\begin{matrix}\widehat{AHM}=\widehat{CKM}=90^0\\\widehat{AMH}=\widehat{CMK}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMH\sim\Delta CMK\left(g.g\right)\Rightarrow\dfrac{AM}{CM}=\dfrac{MH}{MK}\)
\(\Rightarrow\dfrac{AM}{MH}=\dfrac{CM}{MK}\)
Xét hai tam giác AMC và HMK có:
\(\left\{{}\begin{matrix}\dfrac{AM}{MH}=\dfrac{CM}{MK}\left(cmt\right)\\\widehat{AMC}=\widehat{HMK}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMC\sim\Delta HMK\left(c.g.c\right)\)
\(\Rightarrow\dfrac{AM}{MH}=\dfrac{AC}{HK}\Rightarrow MH.AC=AM.HK\)
Mà H là trung điểm BM \(\Rightarrow MH=\dfrac{1}{2}BM\)
\(\Rightarrow\dfrac{1}{2}BM.AC=AM.HK\Rightarrow BM.AC=2AM.HK\)
d.
Từ câu c, do \(\Delta AMC\sim \Delta HMK\Rightarrow \widehat{ACM}=\widehat{HKM}\)
Mà \(\left\{{}\begin{matrix}\widehat{ACM}+\widehat{CAI}=90^0\\\widehat{HKM}+\widehat{HKI}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{CAI}=\widehat{HKI}\)
Xét hai tam giác CAI và HKI có:
\(\left\{{}\begin{matrix}\widehat{I}-chung\\\widehat{CAI}=\widehat{HKI}\end{matrix}\right.\) \(\Rightarrow\Delta CAI\sim\Delta HKI\left(g.g\right)\)
\(\Rightarrow\dfrac{CI}{HI}=\dfrac{AI}{KI}\Rightarrow KI.CI=HI.AI\)
Ta có:
\(AC^2=AK^2+KC^2=AI^2-IK^2+KC^2\)
\(=AI\left(AH+HI\right)-IK^2+KC^2\)\(=AH.AI+AI.HI-IK^2+KC^2\)
\(=AH.AI+KI.CI-IK^2+KC^2=AH.AI+KI\left(CI-IK\right)+KC^2\)
\(=AH.AI+KI.CK+KC^2=AH.AI+CK.\left(KI+CK\right)\)
\(=AH.AI+CK.CI\) (đpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(BA^2=BH\cdot BC\)
b: Xét ΔABM có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABM cân tại A
=>\(\widehat{AMB}=\widehat{ABM}\)
mà \(\widehat{AMB}=\widehat{CMK}\)(hai góc đối đỉnh)
nên \(\widehat{ABM}=\widehat{CMK}\)
Xét ΔHBA vuông tại H và ΔKMC vuông tại K có
\(\widehat{HBA}=\widehat{KMC}\)
Do đó: ΔHBA~ΔKMC
d: Gọi N là giao điểm của IM với CA
Xét ΔCAI có
AK,CH là các đường cao
AK cắt CH tại M
Do đó: M là trực tâm của ΔCAI
=>IM\(\perp\)CA tại N
Xét ΔCKA vuông tại K và ΔCNI vuông tại N có
\(\widehat{KCA}\) chung
Do đó: ΔCKA~ΔCNI
=>\(\dfrac{CK}{CN}=\dfrac{CA}{CI}\)
=>\(CK\cdot CI=CA\cdot CN\)
Xét ΔAHC vuông tại H và ΔANI vuông tại N có
\(\widehat{HAC}\) chung
Do đó: ΔAHC~ΔANI
=>\(\dfrac{AH}{AN}=\dfrac{AC}{AI}\)
=>\(AH\cdot AI=AN\cdot AC\)
\(CK\cdot CI+AH\cdot AI\)
\(=AN\cdot AC+CN\cdot AC\)
\(=AC\left(AN+CN\right)=AC^2\)
\(A=\dfrac{2}{6x-5-9x^2}\)
\(=\dfrac{2}{-9x^2+6x-5}\)
\(=\dfrac{2}{-\left(9x^2-6x+5\right)}\)
\(=\dfrac{2}{-\left(9x^2-6x+1+4\right)}\)
\(=\dfrac{2}{-\left(3x-1\right)^2-4}\)
\(\left(3x-1\right)^2>=0\forall x\)
=>\(-\left(3x-1\right)^2< =0\forall x\)
=>\(-\left(3x-1\right)^2-4< =-4\forall x\)
=>\(A=\dfrac{2}{-\left(3x-1\right)^2-4}>=\dfrac{2}{-4}=-\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi 3x-1=0
=>3x=1
=>\(x=\dfrac{1}{3}\)