Bài 1: Cho tam giác ABC, đường cao AH. Gọi I là trung điểm AC, E là điểm đối xứng với H qua I. Gọi M,N là trung điểm HC,CE các đường thẳng AM,AN cắt HE tại G và K.
a) Chứng minh: Tứ giác AHCE là hình chữ nhật
b) Chứng minh: HG=GK=KE
Mình đang càn gấp bài này, các bạn giúp mình nhé. Cảm ơn các bạn.
a, Xét tứ AHCE ta có: IH = IE ; IA = IC
⇒ tứ giácAHCE là hình bình hành (1)
Mà AH \(\perp\) BC \(\equiv\) H nên ⇒ \(\widehat{AHC}\) = 900 (2)
Kết hợp (1) và (2) ta có: Tứ giác AHCE là hình chữ nhật (đpcm).
b, Xét tam giác AHC có: M là trung điểm HC; I là trung điểm AC
⇒ AM; HI lần lượt là trung tuyến của tam giác AHC
⇒ G là trọng tâm của tam giác AHC ⇒ HG = \(\dfrac{2}{3}\)HI (3)
IG = HI - HG = HI - \(\dfrac{2}{3}\)HI = \(\dfrac{1}{3}\)HI
Chứng minh tương tự ta có: KE = \(\dfrac{2}{3}\)IE = \(\dfrac{2}{3}\)HI (4) ( vì IE = HI)
IK = IE - KE = IE - \(\dfrac{2}{3}\)IE = \(\dfrac{1}{3}\)IE = \(\dfrac{1}{3}\)HI (vì HI = IE)
GK = IG + IK = \(\dfrac{1}{3}\)HI + \(\dfrac{1}{3}\)HI = \(\dfrac{2}{3}\)HI (5)
Kết hợp(3); (4); (5) ta có: HG = GK = KE (đpcm)