Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right).\) . Tìm giá trị nhỏ nhất của biểu thức
P = 6x + 2y + 12z
Cho bốn số thực a,b,x,y bất kì đồng thời thỏa mãn các điều kiện : \(x\ge a\ge0,y\ge b\ge0\) và \(\frac{x-y}{2}=\frac{a-b}{3}\) . . Tìm giá trị nhỏ nhất của P = (x + 2a)(y + 2b) theo a và b
giá trị nhỏ nhất của hàm số \(y=\frac{x}{3-x}+\frac{1-x}{4}\) là một số có dạng \(\sqrt{a}-\frac{b}{c}\) với a,b,c là các số nguyên dương và \(\frac{b}{c}\) là phân số tối giản. Tính P = a + b + c
Cho x,y thỏa mãn \(x^2+y^2=1\) . biểu thức \(A=-11x^2+4y^2+8xy.\) đạt giá trị lớn nhất là M khi \(x=\frac{a}{\sqrt{c}},y=\frac{b}{\sqrt{c}}\) trong đó a,b,c là các số nguyên dương và \(\frac{a}{c},\frac{b}{c}\) tối giản . Tính P = M + a + b + c
Tìm giá trị lớn nhất của biểu thức \(P=\left(x^2-2x\right)\left(2y^2-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{2\left|x\right|+3}{3\left|x\right|-1}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{-5\left|x+7\right|-12}{3\left|x+7\right|-1}\)
Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau:
a,\(\hept{\begin{cases}2x-1\le0\\-3x+5\le0\end{cases}}\)
b,\(\hept{\begin{cases}3-y< 0\\2x-3y+1>0\end{cases}}\)
c,\(\hept{\begin{cases}x-2y< 0\\x+3y>-2\end{cases}}\)
d,\(\hept{\begin{cases}3x-2y-6\ge0\\2\left(x-1\right)+\frac{3y}{2}\le4\\x\ge0\end{cases}}\)
e,\(\hept{\begin{cases}x-y>0\\x-3y\le-3\\x+y>5\end{cases}}\)
f,\(\hept{\begin{cases}x-3y< 0\\x+2y>-3\\y+x< 2\end{cases}}\)
Giải bất phương trình: | x + 1 | >= x - 1
Tìm giá trị lớn nhất của x để biểu thức P = |x + 2| + |x - 3| đạt giá trị nhỏ nhất