cho a+b+c=0
M=a(a+b)(a+c)
E= b(b+c)(a+b)
H=c(a+c)(b+c)
c/m M=E=H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5 + 2xy + 14y - x^2 - 5y^2 - 2x
= -(x^2 + y^2 + 1 - 2xy + 2x - 2y) - (4y^2 - 12y + 9) + 5 + 1 + 9
= -(x-y+1)^2 - (2y-3)^2 + 15 ≤ 15
Dấu "=" xảy ra <=> x-y+1 = 0
2y-3 = 0
<=> x = y-1
y = 3/2
<=> x = 3/2 - 1 = 1/2
a. Tứ giác ABCD là hình bình hành.
⇒AB=CD⇒AB=CD(tính chất hình bình hành)
và AB//CD⇒ˆABD=ˆBDCAB//CD⇒ABD^=BDC^(so le trong)
Xét ΔAMBΔAMBvà ΔCNDΔCNDcó:
AB=CDAB=CD(cmt)
ˆABM=ˆCDNABM^=CDN^(cmt)
BM=DNBM=DN(GT)
⇒ΔAMB=ΔCND(c.g.c)⇒ΔAMB=ΔCND(c.g.c)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
Đề bài sai nhé : đề của mình đây
\(C=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(C=1+2+3+4+...+49+50\)
\(C=51.25=1275\)
~ Hok tốt nhé BRo ~
no nooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooô
câu này biết mới vừa trao đổi bài với thầy xong nhưng ko biết đúng ko
Đáp án:
`hat{ABC} = 135^0`
`hat{C} = 45^0`
Giải thích các bước giải:
– Kẻ `OH ⊥ DC = {H}`
– Xét tứ giác `ABHD` có:
`AD = AB`
`hat{A} = hat{D} = 90^0`
`=> ABHD` là hình vuông
`=>` {DH=HC=2(cm)AD=BH=2(cm)
Xét `ΔBHC` vuông cân tại `H` có:
`hat {HBC} = hat{C} = 45^0`
`=> hat{ABC} = hat{HBC} + hat{ABH} = 45^0 + 90^0 = 135^0`
Kẻ BH ⊥ CD
Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có ∠∠A = ∠∠D = 900900 )
Suy ra: BH // AD
Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD
AB = AD = 2cm (gt)
⇒ BH = HD = 2cm
CH = CD – HD = 4 – 2 = 2 (cm)
Suy ra: Δ∆BHC vuông cân tại H
⇒ ∠∠C = 450450
∠∠B + ∠∠C = 18001800 (2 góc trong cùng phía bù nhau) ⇒ ∠∠B = 18001800 – 450450 = 1350
Do a+b+c = 0
=>\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
=>\(\hept{\begin{cases}M=a\left(-c\right)\left(-b\right)=abc\\E=b\left(-a\right)\left(-c\right)=abc\\H=c\left(-b\right)\left(-a\right)=abc\end{cases}}\)
=> M = E = H
>>>>>>>>>>>>>>>>>>>>>>>>