Bài 3: Tìm nghiệm của các đa thức sau:
a) ( x-2) (4-3x) b) x mũ 2 - 4 c) x mũ 2 + căn 7
d) x mũ 2 + 5x e) x mũ 2 + 5x - 6 f) x mũ 2 +x +1
h) 7x mũ 2 + 11x +4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số lạng bạc của mỗi phần là: \(x\) (\(x\) > 0) (lạng)
Số bạc của 8 người hạng giáp là: \(x\) \(\times\) 7 \(\times\) 8 = 56\(x\) (lạng)
Số bạc của 20 người hạng Ất là: \(x\times\)5\(\times\)20 = 100\(x\) (lạng)
Số bạc của 300 người hạng Bính là: \(x\times\)2\(\times\)300 = 600\(x\) (lạng)
Theo bài ra ta có: 56\(x\) + 100\(x\)+ 600\(x\) = 5292
756\(x\) = 5292
\(x\) = 7
Vậy mỗi phần có số lạng bạc là : 7 lạng
Số lạng bạc mà mỗi người hạng Giáp nhận được là:
7 \(\times\) 7 = 49 (lạng)
Số lạng bạc mà mỗi người hạng Ất nhận được là:
7 \(\times\) 5 = 35 (lạng)
Số lạng bạc mà mỗi người hạng Bính nhận được là:
7 \(\times\) 2 = 14 (lạng)
Kết luận: Mỗi người hạng Giáp nhận được 49 lạng bạc
Mỗi người hạng Ất nhận được 35 lạng bạc
Mỗi người hạng Bính nhận được 14 lạng bạc
`(x-2):(x-1)=(x+4)(x+7)`
\(< =>\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\left(x\ne1;x\ne-7\right)\)
`=>(x-2)(x+7)=(x+4)(x-1)`
`<=>x^2 +7x-2x-14=x^2 -x+4x-4`
`<=>x^2 +5x-14-x^2 -3x+4=0`
`<=>2x-10=0`
`<=>2x=10`
`<=>x=5(tm)`
Gọi số học sinh giỏi là \(a\left(a\inℕ^∗\right)\) ( học sinh )
Số học sinh khá là \(a\times\dfrac{5}{2}=a\times2,5\) ( học sinh )
Nếu số học sinh giỏi thêm 10 bạn và số học sinh khá giảm đi 6 bạn thì số học sinh khá gấp 2 lần số học sinh giỏi
=> \(a\times2,5-6=2\times\left(a+10\right)\)
\(a\times2,5-6=2\times a+20\)
\(a\times2,5-2\times a=20+6\)
\(a\times0,5=26\)
\(a=26\div0,5\)
\(a=52\)
Vậy số học sinh giỏi khối 7 là 52 học sinh
Lời giải:
Gọi tuổi anh và tuổi em hiện nay là $3a$ và $a$ (tuổi)
6 năm nữa tuổi anh là: $3a+6$
6 năm nữa tuổi em là: $a+6$
Theo bài ra ta có: $3a+6=2(a+6)$
$\Rightarrow a=6$ (tuổi)
Vậy tuổi em hiện nay là 6 tuổi. Tuổi anh hiện nay là $6.3=18$ tuổi.
Số sách ở thư viện thứ nhất:
\(\left(15000+3000\right):2=9000\) (cuốn sách)
Số sách ở thư viện thứ hai:
\(15000-9000=6000\) (cuốn sách)
Đáp số:....
2\(xy\) + 6\(x\) - \(y\) = 6
2\(xy\) + 6\(x\) = 6 + \(y\)
\(x\)(2\(y\) + 6) = 6 + \(y\)
\(x\) = (6 + \(y\) ): (2\(y\)+6)
\(x\) \(\in\) Z ⇔ 6 + \(y\) ⋮ 2\(y\) + 6 ⇒ 2.(6+\(y\)) ⋮ 2\(y\) + 6 ⇒ 12 + 2\(y\) ⋮ 2\(y\) + 6
⇒ 2\(y\) + 6 + 6 ⋮ 2\(y\) + 6 ⇒ 6 ⋮ 2\(y\) + 6 ⇒ 3 ⋮ y + 3
Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
\(y+3\) | -3 | -1 | 1 | 3 |
\(y\) | -6 | -4 | -2 | 0 |
\(x\) = (6+\(y\)):(2\(y\)+6) | 0 | -1 | 2 | 1 |
Các cặp (\(x;y\)) thỏa mãn đề bài lần lượt là:
(\(x\); \(y\)) = (0; -6); (-1; -4); (2; -2) ; (1; 0)
Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)
Do đó đề bài xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)
Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)