K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

Ta có: \(\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)=9\)

\(\Leftrightarrow\frac{\left(a-\sqrt{a^2+9}\right)\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Leftrightarrow\frac{-9\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Rightarrow b+\sqrt{b^2+9}=\sqrt{a^2+9}-a\)

Tương tự chỉ ra được: \(a+\sqrt{a^2+9}=\sqrt{b^2+9}-b\)

Cộng vế 2 PT trên lại ta được:

\(a+b+\sqrt{a^2+9}+\sqrt{b^2+9}=\sqrt{a^2+9}+\sqrt{b^2+9}-a-b\)

\(\Leftrightarrow2\left(a+b\right)=0\Rightarrow a=-b\)

Thay vào M ta được:

\(M=2a^4-a^4-6a^2+8a^2-10a+2a+2026\)

\(M=a^4+2a^2-8a+2026\)

\(M=\left(a^4+2a^2-8a+5\right)+2021\)

\(M=\left[\left(a^4-a^3\right)+\left(a^3-a^2\right)+\left(3a^2-3a\right)-\left(5a-5\right)\right]+2021\)

\(M=\left(a-1\right)\left(a^3+a^2+3a-5\right)+2021\)

\(M=\left(a-1\right)^2\left(a^2+2a+5\right)+2021\)\(\ge0+2021=2021\)

Dấu "=" xảy ra khi: a = 1 => b = -1

Vậy Min(M) = 2021 khi a = 1 và b = -1

Cho (O) với dây $\mathrm{AB}$ cố định (AB không qua $\mathrm{O}$ ). Đường kính $\mathrm{CD}$ vuông góc với $\mathrm{AB}$ tại $\mathrm{H}$ (C thuộc cung lớn $\mathrm{AB}$ ). Điểm $\mathrm{M}$ di chuyển trên cung nhỏ $\mathrm{AC}(\mathrm{M} \neq \mathrm{A}$ và $\mathrm{M} \neq \mathrm{C})$. Đường thẳng $\mathrm{CM}$ cắt đường thẳng $\mathrm{AB}$ tại $\mathrm{N}$. Nối $\mathrm{MD}$ cắt $\mathrm{AB}$ tại $\mathrm{E}$. a) Chứng minh tứ giác...
Đọc tiếp

Cho (O) với dây $\mathrm{AB}$ cố định (AB không qua $\mathrm{O}$ ). Đường kính $\mathrm{CD}$ vuông góc với $\mathrm{AB}$ tại $\mathrm{H}$ (C thuộc cung lớn $\mathrm{AB}$ ). Điểm $\mathrm{M}$ di chuyển trên cung nhỏ $\mathrm{AC}(\mathrm{M} \neq \mathrm{A}$ và $\mathrm{M} \neq \mathrm{C})$. Đường thẳng $\mathrm{CM}$ cắt đường thẳng $\mathrm{AB}$ tại $\mathrm{N}$. Nối $\mathrm{MD}$ cắt $\mathrm{AB}$ tại $\mathrm{E}$.
a) Chứng minh tứ giác CMEH nội tiếp.
b) Chứng minh $\mathrm{NM} \cdot \mathrm{NC}=$ NA.NB.
c) Lấy điểm $\mathrm{P}$ đối xứng với $\mathrm{A}$ qua $\mathrm{O}$. Gọi I là trung điểm của $\mathrm{MC}$. Kẻ $\mathrm{IK}$ vuông góc với đường thẳng $\mathrm{AM}$ tại $\mathrm{K}$. Chứng minh $\mathrm{IK} / / \mathrm{MP}$ và điểm $\mathrm{K}$ thuộc một đường tròn cố định.

11
13 tháng 5 2021

a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)

Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)

Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)

2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)

15 tháng 5 2021

Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)

                  Góc CMD =90 độ(góc nt chắn nửa đt)

             Mà góc CHE và góc CMD ở vị trí đối nhau

 ⇒ Tứ giác CMEH nội tiếp

Câu b:

   Xét \(\Delta NACva\Delta NMB\) có :

     Góc N chung

     Góc NCA = góc NBM (cùng chắn cung MA)

⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)

  ⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB

Câu c:

Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK

                                                            Mà IK\(\perp\)AK

                                           ⇒IK song song với MP (từ vuông góc đến song song

 

13 tháng 5 2021

a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)

\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )

15 tháng 5 2021

Câu a:  Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m

    ⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m

Câu b:

Để phương trình có 2 nghiệm nguyên thì  \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)  

13 tháng 5 2021

\(\hept{\begin{cases}\sqrt{x-1}-\frac{1}{2y-1}=0\\2\sqrt{x-1}+\frac{1}{2y-1}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{x-1}-\frac{2}{2y-1}=0\\2\sqrt{x-1}+\frac{1}{2y-1}=3\end{cases}}\)

Lấy (1) - (2) ta được : \(-\frac{2}{2y-1}-\frac{1}{2y-1}=-3\Leftrightarrow\frac{-3}{2y-1}=-3\)

\(\Rightarrow-6y+3=-3\Leftrightarrow y=1\)

Thay vào (2) ra được : \(2\sqrt{x-1}=2\Leftrightarrow x=1\)( tmđk \(x\ge1\))

Vậy hệ phương trình có một nghiệm ( x ; y ) = ( 1 ; 1 ) 

14 tháng 5 2021

Đặt \(\sqrt{x-1}\)=A; \(\dfrac{1}{2y-1}\)=B(A>0;B khác 0) ta được:

   A-B=0                 ⇔ B=1

   2A+B=3                   A=B=1(cả 2 thỏa mãn)

Trở lại phép đặt:  \(\sqrt{x-1}\)=1        ⇔ x=2

                             \(\dfrac{1}{2y-1}\)=1             y=1

13 tháng 5 2021

                Bài làm :

  Đường kính đáy và độ dài trục của hình trụ bằng nhau

=> Chiều cao h gấp 2 lần bán kính r

Ta có :

\(V=\pi.r^2.h\)

\(\Rightarrow16\pi=\pi.r^2.2r\)

\(\Rightarrow2.r^3=16\)

\(\Rightarrow r^3=8\)

\(\Rightarrow r=2\left(cm\right)\)

\(\Rightarrow h=2r=4\left(cm\right)\)

Vậy diện tích vật liệu cần dùng là ;

\(S_{tp}=2.\pi.r.h+2.\pi.r^2=16\pi+8\pi=24\pi\left(cm^2\right)\)

14 tháng 5 2021

Gọi số đo đường kính đáy của hộp sữa là x (cm)→ Trục của hộp sữa là x→Bán kính đáy là \(\dfrac{1}{2}x\)

Vì thể tích hộp sữa là 16\(\pi\)\(\left(\dfrac{1}{2}x\right)^2x=16\)⇔x=4→Bán kính đáy là 2cm

⇒Stp=2.\(\pi\).22.4+2.\(\pi\).22=40\(\pi\)

13 tháng 5 2021

Gọi chữ số hàng chục là của số cần tìm là \(x\)(điều kiện: \(3< x\le9;x\inℕ\)).

Chữ số hàng đơn vị của số cần tìm là \(x-3\).

Vì tổng các bình phương của 2 chữ số là \(45\) nên ta có phương trình:

\(x^2+\left(x-3\right)^2=45\).

\(\Leftrightarrow x^2+x^2-6x+9-45=0\).

\(\Leftrightarrow2x^2-6x-36=0\).

\(\Leftrightarrow2\left(x^2-3x-18\right)=0\).

\(\Leftrightarrow x^2-3x-18=0\).

\(\Leftrightarrow\left(x-6\right)\left(x+3\right)=0\).

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)(tm: Thỏa mãn; ktm: Không thỏa mãn).

\(\Leftrightarrow x=6\).

Do đó chữ số hàng đơn vị của chữ số cần tìm là \(6-3=3\).

Vậy số cần tìm là \(63\)

13 tháng 5 2021

              Bài làm :

Gọi x ; y lần lượt là chữ số hàng chục và chữ số hàng đơn vị .

Điều kiện : \(x,y\inℕ;x>3\)

Theo đề bài ; ta có hệ phương trình ;

\(\hept{\begin{cases}x=y+3\\x^2+y^2=45\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+3\\\left(y+3\right)^2+y^2=45\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+3\\y^2+6y+9+y^2-45=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+3\\2y^2+6y-36=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+3\\y^2+3y-18=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Vậy số cần tìm là 63

12 tháng 5 2021

a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)

Thay \(\sqrt{x}=9\)vào biểu thức A ta được : 

\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)

b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)

\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)

nên \(P>\frac{1}{2}\)

12 tháng 5 2021

a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)

b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)

\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)

\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)

=> P>1/2

12 tháng 5 2021

                           Bài làm :

a) Ta có :

\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)

\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)

Từ đó ; ta có :

\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)

=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện  = 180 độ 

=> Điều phải chứng minh

b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp 

\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)

Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC

\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)

Vì CD⊥AB ; MH⊥AB

=> CD//MH 

=>∠ADC = ∠AMH ( 2góc so le trong ) (3)

Từ (1) ; (2) ; (3) 

\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)

=> Điều phải chứng minh

c)∠AOC = 45o

=>∠COB = 180 - 45 = 135o

\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)

a) Xét tứ giác AHMC có 

góc ACM + góc AHM = 180 độ

Vậy tứ giác AHMC nội tiếp

 

12 tháng 5 2021

                             Bài làm :

Gọi chiều dài một cạnh cần tính là a (m) ; chiều cao tương ứng là h (m) . Điều kiện : a,h > 0

Thửa ruộng có S=2180 m2 

\(\Rightarrow\frac{a.h}{2}=2180\Rightarrow a.h=4360\Rightarrow a=\frac{4360}{h}\left(1\right)\)

Tăng cạnh 4m ; giảm chiều cao tương ứng 1m thì S không đổi 

\(\Rightarrow\left(a+4\right)\left(h-1\right)=4360\left(2\right)\)

Thay (1) vào (2) ; ta được :

\(\left(\frac{4360}{h}+4\right)\left(h-1\right)=4360\)

\(\Leftrightarrow\frac{\left(4360+4h\right)\left(h-1\right)}{h}=\frac{4360h}{h}\)

\(\Leftrightarrow4h^2+4356h-4360-4360h=0\)

\(\Leftrightarrow4h^2-4h-4360=0\)

\(\Delta'=2^2-4.\left(-4360\right)=17444>0\)

\(\Rightarrow\hept{\begin{cases}h_1=\frac{2+\sqrt{17444}}{4}=\frac{1+7\sqrt{89}}{2}\left(TM\right)\\h_2=\frac{2-\sqrt{17444}}{4}=\frac{1-7\sqrt{89}}{2}\left(KTM\right)\end{cases}}\)

Vậy chiều dài một cạnh cần tính là :

\(\frac{4360}{h}=\frac{4360}{\frac{1+7\sqrt{89}}{2}}=-2+14\sqrt{89}\left(m\right)\)

12 tháng 5 2021

Ơ quản lí đùa em à đề bài ghi 2180 m2 mà lời giải là 180 m2 @@ mất gần nửa tiếng số xấu :((

a)\(x^2-\left(m+2\right)x+m=0\)

(a=1;b=-(m+2);c=m)

Ta có:\(\Delta=\left[-\left(m+2\right)\right]^2-4.1.m\)

\(=\left(m+2\right)^2-4m\)

\(=m^2+2m.2+2^2-4m\)

\(=m^2+4m+4-4m\)

\(=m^2+4\)

\(m^2\ge0\forall m\Rightarrow m^2+4m\ge0\left(1\right)\)

Vậy pt luôn có nghiện với mọi m

b,Xét hệ thức vi-ét,ta có:

\(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=m\end{cases}}\)

Theo đề bài ,ta có:

 \(x_1+x_2-3x_1x_2=2\)

\(\Leftrightarrow m+2-3m=2\)

\(\Leftrightarrow-2m+2=2\)

\(\Leftrightarrow-2m=2-2\)

\(\Leftrightarrow m=0\)[t/m(1)]

Vậy với m=0 thì pt thảo mãn điều kiện đề bài cho

12 tháng 5 2021

a, Ta có : \(\Delta=\left(m+2\right)^2-4m=m^2+4m+4-4m=m^2+4>0\forall m\)

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m+2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

Lại có : \(x_1+x_2-3x_1x_2=2\Rightarrow m+2-3m=2\)

\(\Leftrightarrow-2m=0\Leftrightarrow m=0\)