K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{13^2-5^2}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot13=5\cdot12=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

Xét ΔAHB vuông tại H có 

\(cosBAH=\dfrac{AH}{AB}=\dfrac{60}{13}:5=\dfrac{12}{13}\)

nên \(\widehat{BAH}\simeq23^0\)

NV
12 tháng 8 2024

\(A=2\sqrt{2}\left(\dfrac{a}{2\sqrt{2b\left(a+b\right)}}+\dfrac{b}{2\sqrt{2c\left(b+c\right)}}+\dfrac{a}{2\sqrt{2a\left(c+a\right)}}\right)\)

\(A\ge2\sqrt{2}\left(\dfrac{a}{2b+a+b}+\dfrac{b}{2c+b+c}+\dfrac{a}{2a+c+a}\right)\)

\(A\ge2\sqrt{2}\left(\dfrac{a^2}{a^2+3ab}+\dfrac{b^2}{b^2+3bc}+\dfrac{c^2}{c^2+3ca}\right)\)

\(A\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\)

\(A\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(a=b=c\) 

12 tháng 8 2024

Bổ sung các bđt được áp dụng trong bài thầy Lâm cho rõ ràng:

Áp dụng Bđt Cauchy và Bunhiacopxki : 

\(a+3b=2b+\left(a+b\right)\ge2\sqrt[]{2b\left(a+b\right)}\)

\(ab+bc+ca\le\sqrt[]{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}=a^2+b^2+c^2\)

Xét ΔAHB vuông tại H có \(tanBAH=\dfrac{BH}{AH}\)

=>\(BH=AH\cdot tanBAH=4\cdot tan28\simeq2,13\left(cm\right)\)

Xét ΔAHC vuông tại H có

\(tanC=\dfrac{AH}{HC}\)

=>\(HC=\dfrac{AH}{tanC}=\dfrac{4}{tan40}\simeq4,77\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AB=\sqrt{AH^2+HB^2}\simeq4,53\left(cm\right)\)

ΔAHC vuông tại H

=>\(AH^2+HC^2+AC^2\)

=>\(AC=\sqrt{AH^2+HC^2}\simeq6,23\left(cm\right)\)

\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{20+2\cdot2\sqrt{5}\cdot3+9}+\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)

13 tháng 8 2024

`sqrt{29 + 12 sqrt{5}} + sqrt{29 - 12sqrt{5}}`

`= sqrt{20 + 2 . 2sqrt{5} . 3 + 9 } + sqrt{20 - 2 . 2sqrt{5} . 3 + 9}`

`= sqrt{(2sqrt{5})^2 + 2 . 2sqrt{5} . 3 + 3^2 } + sqrt{(2sqrt{5})^2 - 2 . 2sqrt{5} . 3 + 3^2}`

`= sqrt{(2sqrt{5} + 3)^2} + sqrt{(2sqrt{5} - 3)^2}`

`= |2sqrt{5} + 3| + |2sqrt{5} + 3|`

`= 2sqrt{5} + 3 + 2sqrt{5} - 3`

`= 4 sqrt{5}`

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH (H e BC) Bài BC = 10cm và sinC=3/4 Tình độ dài các đoạn thẳng BH,CH,AB,AC?   Bài 3: Cho tam giác ABC cân tại A, B = 65', đường cao CH = 3,6cm. Tính diện tích tam giác ABC?   Bài 4: Cho tam giác ABC vuông tại A, AB-17cm, C=62'. Tính độ dài đường trung tuyển CM?   Bài 6 Cho ABC vuông tại A. Biết BC= 50cm, tanB = 4/3. Tỉnh khoảng cách từ A đến BC và độ dài đường phân...
Đọc tiếp

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH (H e BC) Bài BC = 10cm và sinC=3/4 Tình độ dài các đoạn thẳng BH,CH,AB,AC?

  Bài 3: Cho tam giác ABC cân tại A, B = 65', đường cao CH = 3,6cm. Tính diện tích tam giác ABC?
  Bài 4: Cho tam giác ABC vuông tại A, AB-17cm, C=62'. Tính độ dài đường trung tuyển CM?

  Bài 6 Cho ABC vuông tại A. Biết BC= 50cm, tanB = 4/3. Tỉnh khoảng cách từ A đến BC và độ dài đường phân giác AD của tam giác ABC
  Bài 7. Cho tam giác ABC vuông tại A, đường cao AH (H e BC). Biết B = 60', BC = 10cm. Tính diện
tích tam giác ABH ( kết quả làm tròn đến chữ số thập phân thứ nhất).

  Bài 8. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 6cm và Cos (HAB)= 2/3. Tính chu và diện tích tam giác AHC
  Bài 9. Cho tam giác ABC vuông tại A, đường cao AH và phân giác AD. Biết :AB=9cm , AC=12cm.Tính diện tích tam giác ABD

2
13 tháng 8 2024

Bài 2:

Xét tam giác ABC vuông tại A ta có:

\(sinC=\dfrac{AB}{BC}=>\dfrac{AB}{BC}=\dfrac{3}{4}\\ =>AB=\dfrac{3}{4}BC=\dfrac{3}{4}\cdot10=\dfrac{15}{2}\left(cm\right)\) 

Áp dụng định lý Pythagore cho tam giác ABC ta có:

\(AB^2+AC^2=BC^2\\ =>\left(\dfrac{15}{2}\right)^2+AC^2=10^2\\ =>AC=\sqrt{10^2-\left(\dfrac{15}{2}\right)^2}=\dfrac{5\sqrt{7}}{2}\left(cm\right)\)

Áp dụng hệ thức lượng ta có:

\(AB^2=BC\cdot BH=>BH=\dfrac{AB^2}{BC}=\left(\dfrac{15}{2}\right)^2:10=\dfrac{225}{40}\left(cm\right)\\ AC^2=BC\cdot CH=>CH=\dfrac{AC^2}{BC}=\left(\dfrac{5\sqrt{7}}{2}\right)^2:10=\dfrac{175}{40}\left(cm\right)\)

Bài 9:

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)

=>\(\dfrac{BD}{BC}=\dfrac{3}{7}\)

=>\(S_{ABD}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)

12 tháng 8 2024

\frac{\sqrt{\left(6.2\right)^{2}-\left(5.9\right)^{2}}}{\sqrt{2.43}}

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

nên ADHE là hình chữ nhật

=>AH=DE

Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\)

\(AD\cdot AB+AE\cdot AC=AH^2+AH^2\)

\(=2AH^2=2DE^2\)