cho x;y;z khac 0 thỏa mãn
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}x=\frac{x+y-z}{z}x\)
tính
\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M nhỏ nhất => (x-1)2 phải nhỏ nhất => (x-1)2 nhỏ nhất bằng 0
<=>M=3.02+15=15
Vậy giá trị nhỏ nhất của M là 15
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left(1+\frac{1}{16}\right)=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=16\)
\(\Leftrightarrow\frac{1}{2^x}=\frac{1}{2^{-4}}\)
\(\Rightarrow x=-4\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{2}=\frac{2y}{30}=\frac{3z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{2}=\frac{2y}{30}=\frac{3z}{6}\)
Ta có :
\(f\left(0\right)=a.0^2+b.0+c=c=2015\)
\(f\left(1\right)=a.1^2+b.1+c=a+b+c=2016\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=2017\)
\(a+b+2015=2016\Rightarrow a+b=1\)
\(a-b+2015=2017\Rightarrow a-b=2\)
Cộng vế với vế ta được :\(\left(a+b\right)+\left(a-b\right)=1+2\)
\(\Leftrightarrow2a=3\Rightarrow a=\frac{3}{2}\)
\(\Rightarrow\frac{3}{2}+b=1\Rightarrow b=1-\frac{3}{2}=-\frac{1}{2}\)
\(\Rightarrow f\left(-2\right)=\frac{3}{2}.\left(-2\right)^2+\left(-\frac{1}{2}\right).\left(-2\right)+2015\)
\(=\frac{3}{2}.4+1+2015\)
\(=6+1+2015\)
\(=2022\)
Vậy \(f\left(-2\right)=2022\)
a)\(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow7\left(4+x\right)=4\left(7+y\right)\Leftrightarrow28+7x=28+4y\Leftrightarrow7x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{55}{11}=5\)
=> x=5.4=20; y=5.7=35
b) \(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{z}{20}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}=\frac{x+2y-3z}{10+30-60}=\frac{-24}{-20}=\frac{6}{5}\)
=> \(x=\frac{6}{5}.10=12;y=\frac{6}{5}.15=30;z=\frac{6}{5}.20=24\)