Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
24.
Ta có: \(3k^2+3k+1=k^3+3k^2+3k+1-k^3=\left(k+1\right)^3-k^3\)
Do đó \(a_k=\frac{\left(k+1\right)^3-k^3}{\left(k^2+k\right)^3}=\frac{\left(k+1\right)^3-k^3}{k^3.\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)
Áp dụng ta được:
\(P=a_1+a_2+...+a_9\)
\(=\frac{1}{1^3}-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+...+\frac{1}{9^3}-\frac{1}{10^3}\)
\(=1-\frac{1}{10^3}=\frac{999}{1000}\)
23. Ta có:
\(B=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{\left(6^2-1\right)}.....\frac{\left(2n+1\right)^2}{\left(2n+2\right)^2-1}\)
\(=\frac{1.1.3.3.5.5.....\left(2n+1\right)\left(2n+1\right)}{\left(1.3\right).\left(3.5\right).\left(5.7\right).....\left[\left(2n+1\right)\left(2n+3\right)\right]}\)
\(=\frac{\left[1.3.5.....\left(2n+1\right)\right].\left[1.3.5.....\left(2n+1\right)\right]}{\left[1.3.5.....\left(2n+1\right)\right].\left[3.5.7.....\left(2n+3\right)\right]}\)
\(=\frac{1}{2n+3}\)
\(abc=a+b+c\Leftrightarrow\frac{abc}{abc}=\frac{a+b+c}{abc}\)
\(\Leftrightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=Q\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow P=3^2-2Q=9-2=7\)
ta có :
\(P=a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab\)
\(=1-2ab\ge1-\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)