Cho nhóm các số tự nhiên viết theo quy luật sau: (1); (2;3);(4;5;6);(7;8;9;10)....
Tính tổng của các số hạng của nhóm thứ 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{17\sqrt{5}-38}\text{=}\sqrt[3]{5\sqrt{5}-30+12\sqrt{5}-8}\)
\(\text{=}\sqrt[3]{\left(\sqrt{5}-2\right)^3}\)
\(\text{=}\sqrt{5}-2\)
Trước tiên ta cần chứng minh : \(1^2+n^2+\dfrac{n^2}{\left(n+1\right)^2}\text{=}\left(n+1-\dfrac{n}{n+1}\right)^2\)
\(\Leftrightarrow2.\left(\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n}{n+1}-\dfrac{n^2}{n+1}\right)\text{=}0\)
\(\Leftrightarrow2.0\text{=}0\left(LĐ\right)\)
Ta có : \(E\text{=}\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)
Với bổ đề trên thì :
\(E\text{=}\sqrt{\left(2007+1-\dfrac{2007}{2008}\right)^2}+\dfrac{2007}{2008}\)
\(E\text{=}2008+\dfrac{2007}{2008}-\dfrac{2007}{2008}\)
\(E\text{=}2008\)
Bài 5:
Tích mới giảm so với tích ban đầu:
6210 - 5265 = 945 (đơn vị)
Thừa số giữ nguyên là:
945:7= 135
Thừa số trước khi giảm:
6210 : 135= 46
Đ.số: 2 thừa số là 46 và 135
1417<...17<15171417<...17<1517
Ta gọi tử số cần tìm là x� .
Theo bài ra , ta có :
14171417 = 14×217×214×217×2 = 28342834
15171517 = 15×217×215×217×2 = 30343034
...17=x34...17=�34
Vậy : 2834<x34<30342834<�34<3034 nên x=29
1417<...17<15171417<...17<1517
Ta gọi tử số cần tìm là x� .
Theo bài ra , ta có :
14171417 = 14×217×214×217×2 = 28342834
15171517 = 15×217×215×217×2 = 30343034
...17=x34...17=�34
Vậy : 2834<x34<30342834<�34<3034 nên x=29
Trước tiên ta cần phải rút gọn biểu thức A trước.
Ta có : \(A\text{=}\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}}\)
\(A\text{=}\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)
\(A\text{=}\dfrac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{x+\sqrt{2x+1}+\sqrt{x-\sqrt{2x+1}}}}\)
\(A\text{=}\dfrac{\sqrt{x-1}+1+|\sqrt{x-1}-1|}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)
\(A\text{=}\dfrac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\left(x\ge2\right)\)
\(A\text{=}\dfrac{2\sqrt{x-1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)
\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}}\)
\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}}\)
\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1}+1+\sqrt{2x-1}-1}\left(x\ge2\right)\)
\(A\text{=}\dfrac{\sqrt{2x-2}}{\sqrt{2x-1}}\)
Xét tử thức và mẫu thức của A ta thấy :
\(\sqrt{2x-2}< \sqrt{2x-1}\left(x\ge2\right)\)
\(\Rightarrow A< 1\left(đpcm\right)\)