K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

idcm888dkk8cdw6ysgyxdbwdqjhqwuiowqqwudcgqofyhrli2uiy3yuyewiohewuwfwou

4 tháng 6 2021

xin lỗi, chưa học tới lớp 9

28 tháng 6 2023

Để tìm chiến thuật chơi để An là người thắng cuộc, ta cần xem xét các trường hợp có thể xảy ra.

Trong trường hợp này, số viên kẹo trong hai túi là 18 và 21. Ta có thể tạo bảng để phân tích các trường hợp:

| Lượt chơi | Túi 1 (18 viên) | Túi 2 (21 viên) |
|-----------|----------------|----------------|
| 1         | 17             | 20             |
| 2         | 16             | 19             |
| 3         | 15             | 18             |
| 4         | 14             | 17             |
| 5         | 13             | 16             |
| 6         | 12             | 15             |
| 7         | 11             | 14             |
| 8         | 10             | 13             |
| 9         | 9              | 12             |
| 10        | 8              | 11             |
| 11        | 7              | 10             |
| 12        | 6              | 9              |
| 13        | 5              | 8              |
| 14        | 4              | 7              |
| 15        | 3              | 6              |
| 16        | 2              | 5              |
| 17        | 1              | 4              |
| 18        | 0              | 3              |

Dựa vào bảng trên, ta nhận thấy rằng nếu An chơi một cách thông minh, an sẽ luôn giữ số viên kẹo trong hai túi ở cùng một mức. Điều này đảm bảo rằng Bình sẽ không thể lấy hết kẹo từ một túi nào đó và An sẽ luôn có cơ hội lấy kẹo từ túi còn lại.

Vì vậy, chiến thuật chơi của An là giữ số viên kẹo trong hai túi ở cùng mức. Khi Bình lấy đi một viên kẹo từ một túi, An sẽ lấy đi một viên kẹo từ túi còn lại để duy trì số viên kẹo ở cùng mức.

Với chiến thuật này, An sẽ luôn là người thắng cuộc vì An có thể điều khiển trò chơi sao cho Bình không thể lấy hết kẹo từ một túi nào đó.

30 tháng 12 2024

Bạn đầu tiên không thể thực hiện lượt chơi của mình nghĩa là sao ạ

 

1 tháng 6 2021

hok bik lần nnnnnnnnn

1 tháng 6 2021

lại nữa

1 tháng 6 2021

Từ giả thiết , ta có : \(GT< =>\frac{\left(3a+2b\right)\left(3a+2c\right)}{bc}=\frac{16}{bc}\)

\(< =>\left(\frac{3a}{b}+\frac{2b}{b}\right)\left(\frac{3a}{c}+\frac{2c}{c}\right)=16\)

\(< =>\left(3\frac{a}{b}+2\right)\left(3\frac{a}{c}+2\right)=16\)

đến đây nhắn cho e cái điểm rơi để e nghĩ tiếp nhaaaaaaa

em thi cấp 2:(((cẳng thẳng ko kém

31 tháng 5 2021

Không đăng lên đây chị nhé 

Chị trả lời câu hỏi của The Pie thôi nha

Mà chúc các anh chị thi tốt

31 tháng 5 2021

Bài 2 

a)

Giả sử \(a\le b\le c\)

Xét 3 trường hợp

TH1:Nếu a=2,b=3,c=5 thì \(a^2+b^2+c^2=38\)(không phải số nguyên tố)  (1)

TH2:Nếu a=3,b=5c=7 thì \(a^2+b^2+c^2=83\)  (t/m)                                   (2)

TH3:   a,b,c >3 => \(a,b,c⋮̸3\)

\(\Rightarrow a^2\equiv1\left(mod3\right)\)\(b^2\equiv1\left(mod3\right)\);  \(c^2\equiv1\left(mod3\right)\)

\(\Rightarrow a^2+b^2+c^2\equiv3\left(mod3\right)\)\(a^2+b^2+c^2⋮3\)

Từ (1),(2),(3) ta suy ra có 3 số duy nhất cần tìm là 3,5,7

Đáp án :

\(\infty\)

Bài toán này chúng tôi chịu ! Chắc là sai đề bài.

31 tháng 5 2021

8 896 : 635 + 1 023

\(\frac{8896}{635}\)+ 1 023

\(\frac{658501}{635}\)

17 tháng 12 2022

không mất tính tổng quát giả sử  $a\leqslant b\leqslant c$

đặt 

x=a+b+c

y=ab+bc+ac

z=abc

ta có bđt thức đầu tiên sẽ tương đương với 

$(x+3a)(x+3b)(x+3c)> 25(x-a)(x-b)(x-c)$

 

$\Leftrightarrow x^{3}+3x^{2}(a+b+c)+9x(ab+bc+ac)+27abc> 25(x^{3}-x^{2}(a+b+c)+x(ab+bc+ac)-abc)$

 

$\Leftrightarrow x^{3}-4xy+13z> 0$ (1)

đặt S=VT

ta có

S=$(a+b+c)^{3}-4(a+b+c)(ab+bc+ac)+13abc=(a+b+c)((a+b+c)^{2}-4(ab+bc+ac))+13abc=(a+b+c)((a+b-c)^{2}-4ab)+13abc= (a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)$

vậy (1) tương đương với

$(a+b+c)(a+b-c)^{2}+ab(9c-4b-4c)> 0$

do $0< a\leqslant b\leqslant c$

nên bđt trên hiển nhiên đúng 

vậy được đpcm