K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2024

loading...

13 tháng 8 2024

\(VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\\ =\left[1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\cdot\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\\ =\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\\ =1-\left(\sqrt{a}\right)^2\\ =1-a=VP\)

NV
13 tháng 8 2024

a.

\(\sqrt{x^2-4x+1}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-4x+1=x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-4x+1=0\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{1}{4}\)

b.

\(\sqrt{5x^2-2x+2}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\5x^2-2x+2=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\4x^2-4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{1}{2}\)

NV
13 tháng 8 2024

c.

\(\sqrt{x^2-8x+16}=4-x\)

\(\Leftrightarrow\sqrt{\left(4-x\right)^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

\(\Leftrightarrow4-x\ge0\)

\(\Rightarrow x\le4\)

d.

\(\sqrt{3x+1}=\sqrt{4x-3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-3\ge0\\3x+1=4x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\end{matrix}\right.\)

\(\Rightarrow x=4\)

a:Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có \(\widehat{AKB};\widehat{ACB}\) là các góc nội tiếp chắn cung AB

nên \(\widehat{AKB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{AHE}\left(=90^0-\widehat{DAC}\right)\)

nên \(\widehat{AKB}=\widehat{AHE}\)

=>\(\widehat{AHK}=\widehat{AKH}\)

=>AK=AH

b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{FBC}=180^0\)

mà \(\widehat{CEF}+\widehat{AEF}=180^0\)

nên \(\widehat{AEF}=\widehat{ABC}\)

Gọi Ax là tiếp tuyến tại A của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

DO đó: \(\widehat{xAC}=\widehat{ABC}\)

=>\(\widehat{xAC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên FE//Ax

mà Ax\(\perp\)OA

nên OA\(\perp\)EF

\(3\left(x^2+2x-1\right)-2\left(x^2+3x-1\right)+5x^2=0\)

=>\(3x^2+6x-3-2x^2-6x+2+5x^2=0\)

=>\(6x^2-1=0\)

=>\(6x^2=1\)

=>\(x^2=\dfrac{1}{6}\)

=>\(x=\pm\dfrac{\sqrt{6}}{6}\)

​\(\dfrac{1}{1\sqrt{2}+2\sqrt{1}}+\dfrac{1}{2\sqrt{3}+3\sqrt{2}}+...+\dfrac{1}{99\sqrt{100}+100\sqrt{99}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

13 tháng 8 2024

loading...

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{13^2-5^2}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot13=5\cdot12=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

Xét ΔAHB vuông tại H có 

\(cosBAH=\dfrac{AH}{AB}=\dfrac{60}{13}:5=\dfrac{12}{13}\)

nên \(\widehat{BAH}\simeq23^0\)