K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
6 tháng 2

bài 2: a) thay m = -3 vào (1) ta được:

\(x^2-2\cdot\left(-3\right)x+\left(-3\right)^2-1=0\\ x^2+6x+9-1=0\\ x^2+6x+8=0\\ =>\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

b. từ (1) theo vi-et  ta có; \(x_1+x_2=2m;x_1x_2=m^2-1\)

\(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2-x_1x_2-2\\ \left(2-x_2+2x_1-x_1x_2\right)+\left(2-x_1+2x_2-x_1x_2\right)=x_1^2+x_2^2-x_1x_2-2\\ 2-x_2+2x_1-x_1x_2+2-x_1+2x_2-x_1x_2=x_1^2+x_2^2-x_1x_2-2\\ 4+x_1+x_2-2x_1x_2=x_1^2+x_2^2-x_1x_2-2\\ 6+2m-2m^2=m^2+1\\ 6+2m-2m^2-m^2-1=0\\ -3m^2+2m+5=0\\ 3m^2-2x-5=0\\ =>\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-1\end{matrix}\right.\)

vậy m = 5/3 hoặc m = -1

S
6 tháng 2

 

 

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC 

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

mà OA\(\perp\)BC

nên OA//CD

=>OA//CE

Ta có: OE\(\perp\)BD

AB\(\perp\)BD

Do đó: OE//AB

Xét ΔOBA vuông tại B và ΔDOE vuông tại O có

OB=DO

\(\widehat{BOA}=\widehat{ODE}\)(hai góc đồng vị, OA//DE)

Do đó: ΔOBA=ΔODE

=>BA=DE

mà BA=AC

nên DE=AC

Xét tứ giác OAEC có

OA//EC

OE=CA

Do đó: OAEC là hình thang cân

a: Đặt quyển sách Ngữ Văn là A, quyển sách Mĩ Thuật là B, quyển sách Công Nghệ là C

=>\(\Omega=\left\{AB;BC;AC;BA;CB;CA\right\}\)

b: A: "Có 1 quyển sách Ngữ Văn được lấy ra"

=>A={AB;AC;BA;CA}

=>n(A)=4

=>\(P_A=\dfrac{4}{6}=\dfrac{2}{3}\)

B: "Cả hai quyển sách lấy ra đều là sách Mỹ Thuật"

=>\(B=\varnothing\)

=>P(B)=0

 

S
5 tháng 2

bài 1: a) tổng số lượt sách trong tuần là:

15 + 20 + 35 + 30 = 100 (lượt)

b) tần số tương đối số lượt mượn sách tham khảo là:

\(\dfrac{35}{100}\cdot100\%=35\%\)

bài 2: a. các kết quả thuận lợi cho biến cố M là:

2; 3; 5; 7

b. xâc suất: \(\dfrac{4}{8}\cdot100\%=50\%\)

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

nên MAOB là tứ giác nội tiếp

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại D

Xét ΔODC vuông tại D và ΔOHM vuông tại H có

\(\widehat{DOC}\) chung

Do đó: ΔODC~ΔOHM

=>\(\dfrac{OD}{OH}=\dfrac{OC}{OM}\)

=>\(OD\cdot OM=OC\cdot OH\)

a; Thay m=-2 vào (1), ta được:

\(x^2-\left(-2\right)x+\left(-2\right)-1=0\)

=>\(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

b: \(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>=0\forall m\)

=>Phương trình (1) luôn có hai nghiệm

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\)

\(=\dfrac{2\left(m-1\right)+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}=\dfrac{2m-2+3}{m^2+2}\)

\(=\dfrac{2m+1}{m^2+2}\)

=>\(A-1=\dfrac{2m+1-m^2-2}{m^2+2}=\dfrac{-m^2+2m-1}{m^2+2}=-\dfrac{\left(m-1\right)^2}{m^2+2}< =0\forall m\)

=>\(A< =1\forall m\)

Dấu '=' xảy ra khi m-1=0

=>m=1

Để 4 n + 3 3 n + 1 3n+1 4n+3 thuộc Z thì 4n + 3 chia hết cho 3n + 1

⇒ 3 ( 4 n + 3 ) ⋮ 3 n + 1 ⇒3(4n+3)⋮3n+1 ⇒ 12 n + 9 ⋮ 3 n + 1

⇒12n+9⋮3n+1 ⇒ ( 12 n + 4 ) + 5 ⋮ 3 n + 1

⇒(12n+4)+5⋮3n+1

⇒ 4 ( 3 n + 1 ) + 5 ⋮ 3 n + 1

⇒4(3n+1)+5⋮3n+1

⇒ 5 ⋮ 3 n + 1 ⇒5⋮3n+1

⇒ 3 n + 1 ∈ { ± 1 ; ± 5 }

⇒3n+1∈{±1;±5} +) 3n + 1 = 1

⇒ n = 0

⇒n=0 ( chọn ) +) 3 n + 1 = − 1

⇒ n = − 2 3 3n+1=−1

⇒n= 3 −2 ( loại ) +) 3 n + 1 = 5

⇒ n = 4 3 3n+1=5

⇒n= 3 4 ( loại ) +) 3 n + 1 = − 5

⇒ n = − 2 3n+1=−5

⇒n=−2 Vậy n = 0 hoặc n = -2

A= 2n−1 6n−2 = 2n−1 3(2n−1)+1 =3+ 2n−1 1

⇒ 2 n − 1 ∈ Ư ( 1 ) = { ± 1 }

⇒2n−1∈Ư(1)={±1} 2n-1 1 -1 n 1 loại