Cho phương trình:x²+3x-m-4=0
a)Giải phương trình với m=0
b)Tìm m để phương trình có 2 nghiệm trong đó nghiệm này gấp 2 lần nghiệm kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2−2(m−2)x+2m−5=0 (*)
Δ=[−2(�−2)]2−4⋅1⋅(2�−5)=(4−2�)2−8�+20=16−16�+4�2−8�+20Δ=[−2(m−2)]2−4⋅1⋅(2m−5)=(4−2m)2−8m+20=16−16m+4m2−8m+20
=4�2−24�+36=(2�)2−2⋅2�⋅6+62=(2�−6)2≥0∀�=4m2−24m+36=(2m)2−2⋅2m⋅6+62=(2m−6)2≥0∀x
Để (*) có hai nghiệm phân biệt thì:
(2�−6)2≠0⇔2�−6≠0⇔2�≠6⇔�≠3(2m−6)2=0⇔2m−6=0⇔2m=6⇔m=3
TH1: Nếu �<3m<3
a) Trong (O) có đường kính AB và \(D\in\left(O\right)\) nên \(\widehat{ADB}=90^o\) hay \(DB\perp AM\) tại D.
Tam giác ABM vuông tại B có đường cao BD nên \(AD.AM=AB^2=\left(2r\right)^2=4r^2\)
Mặt khác, đường thẳng OE đi qua trung điểm E của dây cung AD của (O) nên \(OE\perp AD\) tại E hay \(\widehat{OEM}=90^o\). Lại có \(\widehat{OBM}=90^o\), suy ra 4 điểm O, B, M, E cùng thuộc đường tròn (OM).
b) Tam giác OBC cân tại O có đường cao OH nên OH cũng là phân giác của \(\widehat{BOC}\) \(\Rightarrow\widehat{BOM}=\widehat{COM}\)
Xét tam giác BOM và COM có cạnh chung OM, \(\widehat{BOM}=\widehat{COM}\) và \(OB=OC\) nên \(\Delta BOM=\Delta COM\left(c.g.c\right)\) \(\Rightarrow\widehat{OBM}=\widehat{OCM}\)
Mà \(\widehat{OBM}=90^o\) \(\Rightarrow\widehat{OCM}=90^o\) hay \(MC\perp OC\) tại C. Mà \(C\in\left(O\right)\) nên MC là tiếp tuyến của (O).
c) Gọi N là giao điểm của BQ và MO.
Nhận thấy \(\widehat{MDB}=\widehat{MHB}=90^o\) nên tứ giác BHDM nội tiếp đường tròn (BM).
Mặt khác, \(\widehat{CQH}=\widehat{CQA}=\widehat{CBA}=\widehat{CMO}=\widehat{CMH}\) nên tứ giác CMQH nội tiếp
Do đó 3 trục đẳng phương MH, CQ, BD ứng với 3 đường tròn (O), (BM), (CMQH) đồng quy tại 1 điểm T.
Lại có \(TQ.TC=TB.TD\) và \(TB=TC\) nên \(TQ=TD\). Mà \(\widehat{MDT}=\widehat{MQT}=\widehat{MHC}=90^o\) nên \(\Delta MDT=\Delta MQT\) (ch-cgv) \(\Rightarrow MD=MQ\) \(\Rightarrow\) D, Q đối xứng với nhau qua MO
\(\Rightarrow\widehat{NQM}=\widehat{NDM}=\widehat{CDA}=\widehat{CBA}=\widehat{OMB}=\widehat{NMB}\)
Suy ra \(\Delta NMQ~\Delta NBM\left(g.g\right)\) \(\Rightarrow\dfrac{NM}{NB}=\dfrac{NQ}{NM}\) \(\Rightarrow NM^2=NB.NQ\)
Lại có tam giác NBH vuông tại H có đường cao HQ nên \(NH^2=NB.NQ\) \(\Rightarrow NM=NH\).
Với \(x=0\) thì pt thành \(y^2=66\), vô lí.
Với \(x\ge1\) thì ta thấy \(y\) lẻ.
pt \(\Leftrightarrow2^x+64=y^2-1\)
\(\Leftrightarrow2^x+64=\left(y-1\right)\left(y+1\right)\) (*)
Đặt \(y=2z+1\left(z\inℕ\right)\). Khi đó
(*) \(\Leftrightarrow2^x+64=2z\left(2z+2\right)\)
\(\Leftrightarrow2^{x-2}+16=z\left(z+1\right)\) (1)
Nếu \(x=2\) thì VT lẻ, VP chẵn, vô lý.
Nếu \(x=6\) thì (1) thành \(32=z\left(z+1\right)\), vô lý.
Nếu \(x\ge7\) thì (1) thành \(2^4\left(2^{x-6}+1\right)=z\left(z+1\right)\)
Bởi \(gcd\left(2^4,2^{x-6}+1\right)=gcd\left(z,z+1\right)=1\) nên từ đây
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}z⋮16\\z\equiv-1\left[16\right]\end{matrix}\right.\\\left[{}\begin{matrix}16⋮z\\2^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z=16\\\left\{{}\begin{matrix}z+1⋮16\\z^{x-6}+1⋮z\end{matrix}\right.\end{matrix}\right.\)
TH1: \(z=16\Rightarrow2^{x-6}=2^4\Leftrightarrow x=10\Leftrightarrow y=33\)
TH2: \(\left\{{}\begin{matrix}z+1⋮16\\2^{x-6}+1⋮z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\equiv-1\left[16\right]\\2^{x-6}+1⋮z\end{matrix}\right.\). Lại có \(16\left(2^{x-6}+1\right)⋮z+1\)
và \(\left(2^{x-6}+1\right)< z\left(z+1\right)\), đồng thời để ý rằng \(gcd\left(z,z+1\right)=1\) nên từ đó suy ra \(16⋮z+1\) (vì nếu không thì \(2^{x-6}+1⋮x\left(x+1\right)\), vô lí vì \(2^{x-6}+1< x\left(x+1\right)\))
\(z+1=16\Rightarrow z=15\) \(\Rightarrow2^{x-6}+1=15\), vô lý.
Nếu \(x\le5\) thì \(x\in\left\{3,4,5\right\}\). Thử lại, ta thấy \(x=4\) thỏa mãn \(\Rightarrow y=9\)
Do đó pt đã cho có các nghiệm tự nhiên là \(\left(4,9\right),\left(10,33\right)\)
Lời giải:
$A=x^3+y^3+xy=(x+y)^3-3xy(x+y)+xy$
$=1-3xy+xy=1-2xy=(x+y)^2-2xy=x^2+y^2$
Áp dụng BĐT Cô-si:
$x^2+\frac{1}{4}\geq x$
$y^2+\frac{1}{4}\geq y$
$\Rightarrow A=x^2+y^2\geq x+y-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$
Vậy $A_{\min}=\frac{1}{2}$
Giá trị này đạt tại $x=y=\frac{1}{2}$
Đó là kí hiệu tích nhé bạn.
VD1: Cho n số thực \(a_1,a_2,...,a_n\) thì kí hiệu:
\(\prod\limits^n_{i=1}a_i=a_1.a_2...a_n\)
VD2: Cho n số thực dương \(a_1,a_2,...,a_n\). Khi đó ta có bất đẳng thức Cô-si nổi tiếng:
\(\dfrac{a_1+a_2+...+a_n}{n}\ge\sqrt[n]{a_1a_2...a_n}\)
Sử dụng kí hiệu, ta có thể viết lại BĐT này như sau:
\(\dfrac{\sum\limits^n_{i=1}a_i}{n}\ge\sqrt[n]{\prod\limits^n_{i=1}a_i}\). Ta thấy kí hiệu \(\prod\) xuất hiện ở vế phải làm cho BĐT trở nên gọn gàng hơn rất nhiều.
a) với m=0 ta có pt :
x2 + 3x - 4 = 0
Δ = 32 - 4. (-4) = 25 > 0 => pt có 2 nghiệm phân biệt
\(\sqrt{\Delta}=5\)
x1 = \(\dfrac{-3+5}{2}=1\)
x2 = \(\dfrac{-3-5}{2}=-4\)
vậy với m=0 thì S= { -4;1 }
b) để pt có 2 nghiệm thì Δ > 0
=> 32 - 4.( -m - 4 ) > 0
<=> 25 + 4m > 0
<=> m > \(-\dfrac{25}{4}\)
khi đó theo viet có : \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=-m-4\end{matrix}\right.\) (*)
theo bài ta ta có : x1 = 2x2 => x1 - 2x2 = 0
có hệ pt : \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1-2x_2=0\end{matrix}\right.\) <=> 3x2 = -3 <=> x2 = -1
=> x1 = -2
thay x1 = -2 , x2 = -1 vào (*) :
-2 . (-1) = -m - 4
<=> -m - 4 = 2
<=> -m = 6
<=> m = -6 ( thỏa mãn )
vậy m = -6