Bài 20: (Đăng hộ)
a, cho 3 số x, y, z có tổng khác 0 thỏa mãn điều kiện \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Tính giá trị biểu thức M = \(\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
b, CMR: Nếu a + c = 2b và 2bd = c(b + d) thì \(\frac{a}{b}=\frac{c}{d}\) với b, d khác 0
c, Cho x, y, z là các số khác 0 và x2 = yz; y2 = xz; z2 = xy
CMR: x = y = z
Bài 20:
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = x
=> x = y = z
mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
b) a + c = 2b
=> d(a + c) = 2bd
=> ad + cd = 2bd (1)
Có: c(b + d) = 2bd
=> cb + cd = 2bd (2)
(1);(2) => ad + cd = cb + cd
=> ad = cb
=> a/b = c/d
=> đpcm
đợi nghĩ nốt c đã
ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à