K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

a) Xem hình trên và vẽ lại 

b)

+) Ta coi mỗi ô vuông trên hình 55 là một hình vuông có cạnh là 1cm1cm.

    Từ hình vẽ ta xác định được: A(2;4), B(4;4)A(2;4), B(4;4).

+) Tính độ dài các cạnh của ΔOAB∆OAB:

Dễ thấy AB=4−2=2AB=4−2=2  (cm)(cm).

Gọi CC là điểm biểu diễn số 44 trên trục tung, ta có OC=4cm,AC=2cm;BC=4cmOC=4cm,AC=2cm;BC=4cm

Áp dụng định lý Py-ta-go cho các tam giác vuông OACOAC và OBCOBC, ta có:

OA=√AC2+OC2=√22+42=2√5(cm)OB=√BC2+OC2=√42+42=4√2(cm)OA=AC2+OC2=22+42=25(cm)OB=BC2+OC2=42+42=42(cm)

⇒⇒ Chu vi ΔOABΔOAB là:

CΔOAB=OA+OB+ABCΔOAB=OA+OB+AB

              =2+2√5+4√2≈12,13(cm)=2+25+42≈12,13(cm)

+) Tính diện tích ΔOAB∆OAB:

Cách 1:

SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)

Cách 2: 

ΔOAB có đường cao ứng với cạnh AB là OC.

⇒SΔOAB=1/2.OC.AB=1/2.4.2=4⇒S∆OAB=1/2.OC.AB=1/2.4.2=4 (cm2)



 

24 tháng 9 2021

a,

loading...

b,

Từ hình vẽ ta có: yA = yB = 4 suy ra:.

    + Hoành độ của A: 4 = 2.xA => xA = 2 (*)

    + Hoành độ của B: 4 = xB => xB = 4

=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)

- Tìm độ dài các cạnh của ΔOAB

- Tìm độ dài các cạnh của ΔOAB

Để học tốt Toán 9 | Giải bài tập Toán 9

 
 
 
 
 
 
 
 
 
 
 
 
 
14 tháng 6 2021

Cách vẽ:  

- Cho x=1x=1 ta được y=√3.1=√3y=3.1=3. Suy ra A(1;√3)A(1;3)

- Cho x=0x=0 ta được y=√.0=0y=.0=0. Suy ra O(0;0)O(0;0)

Vẽ đường thẳng qua O, A được đồ thị hàm số y=√3x.y=3x.

Các bước vẽ:

- Vẽ một hình vuông có độ dài cạnh là 1 đơn vị, có một đỉnh là O, lấy điểm B(1;1)B(1;1). Khi đó, đường chéo OB có độ dài bằng √12+12=√2.12+12=2.

- Vẽ cung tròn tâm OO, bán kính OBOB , ta xác định được điểm CC trên tia OxOx, và ta có OC=√2.OC=2.

- Vẽ một hình chữ nhật có một đỉnh là O, cạnh CD = 1 và cạnh OC = OB = √22 ta được đường chéo OD=√CD2+OC2=√1+(√2)2=√3.OD=CD2+OC2=1+(2)2=3.

- Vẽ cung tròn tâm OO, bán kính ODOD , ta xác định được điểm EE trên tia OyOy, và ta có OE=√3.OE=3.

- Vẽ hình chữ nhật có một đỉnh là O, có một cạnh bằng 1 đơn vị và một cạnh có độ dài bằng OE=√3OE=3 ta được điểm A(1;√3)A(1;3) . 

- Vẽ đường thẳng đi qua gốc tọa độ O và điểm A ta được đồ thị của hàm số y=√3xy=3x 



 

24 tháng 9 2021

+,vẽ hình vuông có đọ dài cạch lá 1đon vị,một đỉnh lá O,ta được đường chéo OB có độ dài =\(\sqrt{2}\)

+,vẽ hình chữ nhạt có 1 đỉnh là O, cạnh CD=1 và cạnh OC=\(\sqrt{2}\),ta được đường chéo ODcó độ dài=\(\sqrt{3}\).

+.vẽ hình chữ nhật có một đỉnh O,một cạnh =1 và 1 cạch =\(\sqrt{3}\),ta được điểm A (1,\(\sqrt{3}\))

+vẽ dduongf thẳng qua góc tọa độ Ovà điểm A ta dduocjw ddof thị của hàm số y=\(\sqrt{3}\)x

14 tháng 6 2021

Lời giải:

a) - Với hàm số y = 2x

Bảng giá trị:

x01
y = 2x02

Đồ thị hàm số y = 2x đi qua gốc tọa độ và điểm A( 1;2)

- Với hàm số y = -2x

Bảng giá trị:

x01
y = -2x0-2

Đồ thị hàm số y = -2x đi qua gốc tọa độ và điểm B( 1; - 2)

Để học tốt Toán 9 | Giải toán lớp 9

b) - Ta có O(x1 = 0, y1 = 0) và A(x2 = 1, y2 = 2) thuộc đồ thị hàm số y = 2x, nên với x1 < x2 ta được f(x1) < f(x2).

Vậy hàm số y = 2x đồng biến trên R.

- Lại có O(x1 = 0, y1 = 0) và B(x3 = 1, y3 = -2) thuộc đồ thị hàm số y = -2x, nên với x1 < x3 ta được f(x1) < f(x3).

Vậy hàm số y = -2x nghịch biến trên R.

14 tháng 6 2021

a) Tự vẽ đths :vvv

ĐTHS y = 2x là đường thẳng đi qua (0;0) và (2;1)

ĐTHS y = -2x là đường thẳng đi qua (0;0) và (-2;1)

b) Xét 2 hàm số:

Vì h/s y = 2x có 2 > 0 => HS đồng biến

Vì h/s y = -2x có -2 < 0 => HS nghịch biến

14 tháng 6 2021

a) Ta có y=f(x)=−1/2x+3y=f(x)=−1/2x+3.

Với y=−1/2x+3y=−1/2x+3 thay các giá trị của xx vào biểu thức của yy, ta được:

+) f(−2,5)=−1/2.(−2,5)+3f(−2,5)=−1/2.(−2,5)+3

=(−0,5).(−2,5)+3=(−0,5).(−2,5)+3=1,25+3=4,25=1,25+3=4,25

+)  f(−2)=−1/2.(−2)+3f(−2)=−1/2.(−2)+3

 =(−0,5).(−2)+3=1+3=4=(−0,5).(−2)+3=1+3=4.

 +) f(−1,5)=−1/2.(−1,5)+3f(−1,5)=−1/2.(−1,5)+3

=(−0,5).(−1,5)+3=(−0,5).(−1,5)+3=0,75+3=3,75=0,75+3=3,75.

 +) f(−1)=−1/2.(−1)+3f(−1)=−1/2.(−1)+3

=(−0,5).(−1)+3=0,5+3=3,5=(−0,5).(−1)+3=0,5+3=3,5.

+) f(−0,5)=−1/2.(−0,5)+3f(−0,5)=−1/2.(−0,5)+3

=(−0,5).(−0,5)+3=(−0,5).(−0,5)+3=0,25+3=3,25=0,25+3=3,25.

 +) f(0)=−1/2.0+3f(0)=−1/2.0+3=(−0,5).0+3=0+3=3=(−0,5).0+3=0+3=3

 +) f(0,5)=−1/2.0,5+3f(0,5)=−1/2.0,5+3

=(−0,5).0,5+3=(−0,5).0,5+3=−0,25+3=2,75=−0,25+3=2,75

 +) f(1)=−1/2.1+3f(1)=−1/2.1+3

=(−0,5).1+3=−0,5+3=2,5=(−0,5).1+3=−0,5+3=2,5.

+) f(1,5)=−1/2.1,5+3f(1,5)=−1/2.1,5+3

=(−0,5).1,5+3=−0,75+3=(−0,5).1,5+3=−0,75+3=2,25=2,25

+)  f(2)=−1/2.2+3f(2)=−1/2.2+3

=(−0,5).2+3=−1+3=2=(−0,5).2+3=−1+3=2.

 +) f(2,5)=−1/2.2,5+3f(2,5)=−1/2.2,5+3

=(−0,5).2,5+3=−1,25+3=(−0,5).2,5+3=−1,25+3=1,75=1,75

Ta có bảng sau:

b)

Nhìn vào bảng giá trị của hàm số ở câu a ta thấy khi xx càng tăng thì giá trị của f(x)f(x) càng giảm. Do đó hàm số nghịch biến trên R



 

5 tháng 7 2021

a)

xx -2,52,5 -22 -1,51,5 -11 -0,50,5 00 0,50,5 11 1,51,5 22 2,52,5
y=-\dfrac{1}{2} x+3y=
\(\dfrac{1}{2}\)x+
3
4,254,25 44 3,753,75 3,53,5 3,253,25 33 2,752,75 2,52,5 2,252,25 22 1,751,75
 

b) Khi xx lần lượt nhận các giá trị tăng lên thì giá trị tương ứng của hàm số lại giảm đi. Vậy hàm số đã cho nghịch biến trên \mathbb{R}R.

 

em xin lỗi nhưng em chưa đủ tuổi để làm bài này xin cáo từ

xin lỗi quản lý olm ạ

14 tháng 6 2021


a) Ta có:
f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.
b) Ta có: 
g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.
c) Khi biến xx lấy cùng một giá trị thì giá trị của hàm số y=f(x)y=f(x) luôn nhỏ hơn giá trị tương ứng của hàm số y=g(x)y=g(x) là 3 đơn vị.

13 tháng 6 2021

A B C H 12

a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)

\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)

* Áp dụng hệ thức : 

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)

\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)

\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm 

\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm

\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)

Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2

13 tháng 6 2021

A B C H D 15 20

b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Lại có : \(BC=BD+DC=15+20=35\)cm 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)

\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm 

\(\Rightarrow AB=\frac{3}{4}.28=21\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm 

\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm

Áp dụng định lí Pytago cho tam giác AHD vuông tại H 

\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm 

13 tháng 6 2021

A B C H D

Vì AD là phân giác nên \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{AB}{AC}=\frac{10}{20}\Rightarrow AB=\frac{1}{2}AC\)

Lại có : \(BD+DC=BC\Rightarrow BC=10+20=30\)cm

Áp dụng định lí Pytago cho tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2\Rightarrow\left(\frac{1}{2}AC\right)^2+AC^2=900\)cm

\(\Leftrightarrow\frac{5}{4}AC^2=900\Leftrightarrow AC^2=720\Leftrightarrow AC=12\sqrt{5}\)cm

\(\Rightarrow AB=\frac{1}{2}AC=\frac{1}{2}.12\sqrt{5}=6\sqrt{5}\)cm 

* Áp dụng hệ thức \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{180}+\frac{1}{720}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{144}\Leftrightarrow AH^2=144\Leftrightarrow AH=12\)cm 

* Áp dụng hệ thức 

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{180}{30}=6\)cm 

\(\Rightarrow BD=BH+HD\Rightarrow HD=BD-BH=10-6=4\)cm

13 tháng 6 2021

AD phân giác 

=> \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{10}{20}=\frac{1}{2}\)

=> \(\frac{AB^2}{AC^2}=\frac{1}{4}\)

=> 4.AB2 = AC2 (1)

Vì tam giác ABC vuông tại A 

=> AB2 + AC2 = BC2 (định lý Py-ta-go)

=> AB2 + AC2 = (BD+DC)2

=> 4AB2 = 302

=> AB2 = 180 

=> AC2 = 720

Lại có \(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\)

=> AB.AC = AH.BC

=> AB2.AC2 = AH2.BC2

=> AH2 = \(\frac{AB^2.AC^2}{BC^2}=\frac{180.720}{900}=144\)

=> AH = 12 cm

mà tam giác ABH vuông tai H 

=> AH2 + BH2 = AB2

=> BH2 = AB2 - AH2 = 180 - 144 = 36

=> BH = 6 cm

mà BH + HD = BD

=> BH = BD - HD = 10 - 6 = 4 cm

13 tháng 6 2021

Gọi giá tiền 1 quyển tập là a (đồng ); giá tiền 1 cây bút là b ( đồng ) ( a , b ∈ N* )

Theo bài ra , ta có :

5a + 7b = 71 000 (1)

3a = 10b => b = 0,3a (2)

Từ (1) và (2) => 5a + 7(0,3a) = 71 000

=> 5a + 2,1a = 71 000

=> (5 + 2,1 )a = 71 000

=> 7,1a = 71 000

=> a = 71 000 : 7,1 = 10 000 , thay vào (2)

=> 3 x 10 000 = 10b

=> 30 000 = 10b

=> b = 30 000 : 10

=> b = 3000

Khi đó , Hoa mua 8 quyển tập và 5 cây bút thì phải trả số tiền là :

8 . 10 000 + 5 . 3000 = 80 000 + 15 000 = 95 000 ( đồng )

Vậy .......................

~~học tốt~~

13 tháng 6 2021

Gọi giá tiền 1 quyển tập là a (đồng ); giá tiền 1 cây bút là b ( đồng ) ( a , b ∈ N* )

Theo bài ra , ta có :

5a + 7b = 71 000 (1)

3a = 10b => b = 0,3a (2)

Từ (1) và (2) => 5a + 7(0,3a) = 71 000

=> 5a + 2,1a = 71 000

=> (5 + 2,1 )a = 71 000

=> 7,1a = 71 000

=> a = 71 000 : 7,1 = 10 000 , thay vào (2)

=> 3 x 10 000 = 10b

=> 30 000 = 10b

=> b = 30 000 : 10

=> b = 3000

Khi đó , Hoa mua 8 quyển tập và 5 cây bút thì phải trả số tiền là :

8 . 10 000 + 5 . 3000 = 80 000 + 15 000 = 95 000 ( đồng )

Vậy .......................