K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2022

đáp án C nhé

10 tháng 4 2022

đáp án c nhé bạn 

nhớ k cho mik nhé :)

10 tháng 4 2022

Ta có:

Vì 126 và 165 chia hết cho 3 nên ta chia 2 vế cho 3.

\(\frac{126}{165}=\frac{126:3}{165:3}=\frac{42}{55}\)

Vậy phân số \(\frac{126}{165}\)rút gọn được thành phân số: \(\frac{42}{55}\)

Đáp số: \(\frac{42}{55}\)

10 tháng 4 2022

= 42/55

10 tháng 4 2022

1/4 số bi bằng:

   40 x 1/4 = 10(viên bi)

10 viên bi trùng khớp với số bi xanh nên kết luận:1/4 số viên bi có màu xanh.

NV
10 tháng 4 2022

Cách 1:

Do vai trò của a;b;c là như nhau, không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow3=ab+bc+ca\le3ab\Rightarrow ab\ge1\)

Ta có:

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\)

\(\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=1-\dfrac{ab-1}{ab+1}=\dfrac{2}{1+ab}\)

\(\Rightarrow VT\ge\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\ge\dfrac{3}{2}\Leftrightarrow c^2+3-ab\ge3abc^2\)

\(\Leftrightarrow c^2+ac+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\)

Đúng do \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{9}{ab+bc+ca}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
10 tháng 4 2022

Cách 2:

\(\Leftrightarrow1-\dfrac{a^2}{a^2+1}+1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{3a^2}{3a^2+3}+\dfrac{3b^2}{3b^2+3}+\dfrac{3c^2}{3c^2+3}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{3a^2}{2a^2+a^2+ab+bc+ca}+\dfrac{3b^2}{2b^2+b^2+ab+bc+ca}+\dfrac{3c^2}{2c^2+c^2+ab+bc+ca}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}+\dfrac{b^2}{b\left(a+b+c\right)+2b^2+ac}+\dfrac{c^2}{c\left(a+b+c\right)+2c^2+ab}\le\dfrac{1}{2}\)

Ta có:

\(\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}\le\dfrac{1}{4}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{4}\left(1+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

Nên ta chỉ cần chứng minh:

\(\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)

\(\Leftrightarrow\dfrac{\left(bc\right)^2}{2a^2bc+\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{2ab^2c+\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{2abc^2+\left(ab\right)^2}\ge1\)

Đúng do:

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\)

10 tháng 4 2022

em: 25.000 đ

anh: 50.000 đ

mẹ còn lại: 100.000 - 25.000 - 50.000 = 25.000 đ

NV
10 tháng 4 2022

\(\left|x-2021\right|=x-2021\)

\(\Leftrightarrow x-2021\ge0\)

\(\Leftrightarrow x\ge2021\)

Vậy nghiệm của pt là \(x\ge2021\)

18 tháng 4 2022

9 tuổi

Đổi 3030 phút =0,5=0,5 giờ

Khi xe thứ hai khởi hành thì khoảng cách 2 xe là:

         \(137,5−50×0,5=112,5(km)\)

Thời gian xe thứ hai lúc khởi hành đến khi gặp xe thứ nhất là:

       \(112,5:(50+40)=1,25\)

   \(Đổi 1,25 giờ =1 giờ 15 phút\)

            Đáp số:\(1 giờ 15 phút\)

29 tháng 4 2022

Đổi 30 phút = 0,5 giờ

Khi xe thứ hai khởi hành thì khoảng cách 2 xe là:

          137,5−50×0,5=112,5137,5-50×0,5=112,5 (km)

Thời gian xe thứ hai lúc khởi hành cho đến khi gặp xe

             thứ nhất là:

         112,5÷(50+40)=1,25112,5÷(50+40)=1,25 ( giờ )

   Đổi 1,251,25 giờ = 11 giờ 1515 phút

            Đáp số: 11 giờ 1515 phút