Tìm chữ số tận cùng của lũy thừa:
81975
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 72008 = (74)1004 = (\(\overline{...1}\))1004 = \(\overline{...1}\)
B = 23456 = (24)864 = \(\overline{...6}\)864 = \(\overline{...6}\)
C = 204208 = (2042)104 = \(\overline{...6}\)104 = \(\overline{...6}\)
D = 996 = (92)48 = \(\overline{...1}\) 48 = \(\overline{...1}\)
E = 20032007 = (20034)501.20033 = \(\overline{...1}\) .\(\overline{..7}\) = \(\overline{..7}\)
G = 20222022 = (20224)505.20222 = \(\overline{...6}\).\(\overline{...4}\) = \(\overline{...4}\)
A = 72008 = (74)1004 = (...1‾...1)1004 = ...1‾...1
B = 23456 = (24)864 = ...6‾...6864 = ...6‾...6
C = 204208 = (2042)104 = ...6‾...6104 = ...6‾...6
D = 996 = (92)48 = ...1‾...1 48 = ...1‾...1
E = 20032007 = (20034)501.20033 = ...1‾...1 ...7‾..7 = ..7‾..7
G = 20222022 = (20224)505.20222 = ...6‾...6....4‾...4 = ...4‾...4
=>\(x^2\)+ \(7x\)=3\(x^2\)+\(7x\)-5
=>\(-2x^2\)+5=0
=>2\(x^2\)-5=0
=>2\(x^2\)=5
=>\(x^2\)=\(\dfrac{5}{2}\)
=>\(x\)=-\(\sqrt{\dfrac{5}{2}}\)
=>\(x\)=+\(\sqrt{\dfrac{5}{2}}\)
`@` `\text {Ans}`
`\downarrow`
\(5^{x-2}-3^2=2^4-\left(6^8\div6^6-6^2\right)\)
`\Rightarrow`\(5^x\div5^2-9=16-\left(6^2-6^2\right)\)
`\Rightarrow`\(5^x\div5^2-9=16\)
`\Rightarrow`\(5^x\div5^2=25\)
`\Rightarrow`\(5^x=5^2\cdot5^2\)
`\Rightarrow`\(5^x=5^4\Rightarrow x=4\)
Vậy, `x = 4.`
5ˣ⁻² - 3² = 2⁴ - (6⁸ : 6⁶ - 6²)
5ˣ⁻² - 9 = 16 - (36 - 36)
5ˣ⁻² - 9 = 16
5ˣ⁻² = 16 + 9
5ˣ⁻² = 25
5ˣ⁻² = 5²
x - 2 = 2
x = 2 + 2
x = 4
3ˣ + 4² = 16
3ˣ + 16 = 16
3ˣ = 16 - 16
3ˣ = 0 (vô lý)
Vậy không tìm được x thỏa mabx yêu cầu
\(5x\left(x-3\right)=\left(x-2\right)\left(5x-1\right)-5\\ \Leftrightarrow5x^2-15x=5x^2-11x+2-5\\ \Leftrightarrow4x=3\\ \Leftrightarrow x=\dfrac{3}{4}\)
\(\left(\dfrac{-1}{3}\right)^{-1}=-3\)
Vì \(\left(\dfrac{-1}{3}\right)^{-1}=\left(\dfrac{1}{-3}\right)^{-1}=\left(-3^{-1}\right)^{-1}=-3^{-1\times\left(-1\right)}=-3^1=-3\)
=> \(\left(\dfrac{-1}{3}\right)^{-1}=-3\)
D = \(\dfrac{1}{1\times1981}\) + \(\dfrac{1}{2\times1982}\)+...+ \(\dfrac{1}{25\times2005}\)
D =\(\dfrac{1}{1980}\times\)( \(\dfrac{1980}{1\times1981}\)+ \(\dfrac{1980}{2\times1982}\)+....+ \(\dfrac{1980}{25\times2005}\))
D = \(\dfrac{1}{1980}\) \(\times\)(\(\dfrac{1}{1}\) - \(\dfrac{1}{1981}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{1982}\)+....+ \(\dfrac{1}{25}\) \(\times\) \(\dfrac{1}{2005}\))
D= \(\dfrac{1}{1980}\)[( \(\dfrac{1}{1}\) + \(\dfrac{1}{2}\) +....+ \(\dfrac{1}{25}\)) - ( \(\dfrac{1}{1981}\)+ \(\dfrac{1}{1982}\)+...+ \(\dfrac{1}{2005}\))]
E =\(\dfrac{1}{25}\times\)( \(\dfrac{1}{1\times26}\)+ \(\dfrac{1}{2\times27}\)+...+ \(\dfrac{1}{1980\times2005}\))
E = \(\dfrac{1}{25}\). (\(\dfrac{25}{1\times26}\) + \(\dfrac{25}{2\times27}\)+....+ \(\dfrac{25}{1980\times2005}\))
E = \(\dfrac{1}{25}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{26}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{27}\)+...+\(\dfrac{1}{1980}\)-\(\dfrac{1}{2005}\))
E=\(\dfrac{1}{25}\)[\(\dfrac{1}{1}\)+...+ \(\dfrac{1}{25}\)+ (\(\dfrac{1}{26}\)+...+\(\dfrac{1}{1980}\)) - (\(\dfrac{1}{26}\)+...+\(\dfrac{1}{1980}\)) - (\(\dfrac{1}{1981}\)+..\(\dfrac{1}{2005}\))]
E = \(\dfrac{1}{25}\) .[\(\dfrac{1}{1}\)+\(\dfrac{1}{2}\)+...+\(\dfrac{1}{25}\) - (\(\dfrac{1}{1981}\)+\(\dfrac{1}{1982}\)+...+ \(\dfrac{1}{2005}\))]
\(\dfrac{D}{E}\) = \(\dfrac{\dfrac{1}{1980}}{\dfrac{1}{25}}\) = \(\dfrac{5}{396}\)
81975 = (84)493.83 = \(\overline{..6}\)493. \(\overline{...2}\) = \(\overline{..2}\)
8^1975=8^1972*8^3
8^1975=(8^4)^493*512
8^1975= ...6^493*512
8^1975=....6*512
=>8^1975=...2