Tính giá trị của biểu thức :
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\) với \(n\in Z+\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1 quý = 3 tháng
Ta có: mức lương 1 tháng là a đồng
Trong 1 quý người đó được thưởng m đồng (đảm bảo đủ ngày công và làm việc có hiệu quả)
Ta có: 3.a + m
b) 1 quý = 3 tháng
Ta có: lương a đồng trong 1 tháng
Vì nghỉ 1 ngày công không phép nên số tiền nhận được trong 2 quý là:
(a. 3 . 2) - n = 6.a -n
Bạn ơi , mình học lớp 6 nên không biết cách dùng mod :
a) 2200 + 2201 + ... + 2206
= 2200 + 2201 + 2202 + 2203 + 2204 + 2205 + 2206
= 2200 + ( 2200 x 21 ) + ( 2200 x 22 ) + ( 2200 x 23 ) + 2204 + ( 2200 x 25 ) + ( 2200 x 26 )
= .....6 + ( .....6 x 2 ) + ( .....6 x 4 ) + ( .....6 x 8 ) + .....6 + ( .....6 x 32 ) + ( .....6 x 64 )
= .....6 + .....2 + .....4 + .....8 + .....6 + .....2 + .....4
= .....2
b) 32004 + 22005
= 32004 + ( 22004 x 21 )
= .....1 + ( .....6 x 2 )
= .....1 + .....2
= .....3
x = 2014 => x + 1 = 2015
=> f(2014) = x2014 - (x + 1).x2013 + (x + 1).x2012 - ... - (x + 1).x + x + 1
= x2014 - x2014 - x2013 + x2013 + x2012 - ... - x2 - x + x + 1
= 1
de bai la gi vay ban co phai tim x,y ko minh cung ko hieu cho lam
Có 1 = \(\frac{3^0+1}{2}\)
2 = \(\frac{3^1+1}{2}\)
5 = \(\frac{3^2+1}{2}\)
14 = \(\frac{3^3+1}{2}\)
.......
=> S = \(\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+1.n}{2}\)
S = \(\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+n}{2}\)
Đặt A = 30 + 31 + 32 + 33 +....+ 3n-1
=> 3A = 31 + 32 + 33 +....+ 3n
=> 2A = 3A - A = 3n - 30
=> A = \(\frac{3^n-1}{2}\)
Thay A vào S, ta có:
S = \(\frac{\frac{3^n-1}{2}+n}{2}\)
=> S = \(\frac{3^n-1}{4}+\frac{n}{2}\)
Hồ Thu Giang à, trong 4 đáp án ở bài Cóc vàng tài ba đó ko có cái này !