Luyện tập nhé:
Giải phương trình \(\left(x^2-7x+11\right)^{x^2-13x+42}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 độ dài kích thước hình hộp chữ nhật là a;b;h .
Gọi độ dài 1 cạnh hình lập phương là c
=> Vhhcn = a.b.h
Vhlp = c3 ; mà a + b + h = c + c + c = 3c
Khi đó Vhlp = c3 = \(\left(\frac{a+b+h}{3}\right)^3\ge\left(\frac{3\sqrt[3]{abh}}{3}\right)^3=abh\)= Vhhcn
=> ĐPCM ("=" khi a = b = h = c)
2 3 4 x y
Áp dụng công thức tính diện tích và lập tỉ số ta có:
\(\hept{\begin{cases}\frac{x}{y+3}=\frac{2}{4}=\frac{1}{2}\\\frac{y}{x+2}=\frac{3}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-y=3\\3x-4y=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{18}{5}\\y=\frac{21}{5}\end{cases}}\)
Vậy phần diện tích cần tìm là \(x+y=\frac{18}{5}+\frac{21}{5}=\frac{39}{5}\)
C/m tổng quát : \(A=\left(a+1\right)\left(a^2+1\right)\left(a^4+1\right)\left(a^8+1\right)...\left(a^{2^n}+1\right)=\frac{a^{2^{n+1}}-1}{a-1}\)
Có : \(A=\frac{\left(a+1\right)\left(a-1\right)}{a-1}.\frac{\left(a^2+1\right)\left(a^2-1\right)}{a^2-1}.\frac{\left(a^4+1\right)\left(a^4-1\right)}{a^4-1}...\frac{\left(a^{2^n}+1\right)\left(a^{2^n}-1\right)}{a^{2^n}-1}\)
\(=\frac{\left(a^2-1\right)\left(a^4-1\right)\left(a^8-1\right)...\left(a^{2^{n+1}}-1\right)}{\left(a-1\right)\left(a^2-1\right)\left(a^4-1\right)...\left(a^{2^n}-1\right)}=\frac{a^{2^{n+1}}-1}{a-1}\)(đpcm)
Với a = 2 ; n = 11 => \(A=2^{4096}-1\)
a. PTHH: \(Zn+H_2SO_4\rightarrow ZnSO_4+H_2\uparrow\)
Ban đầu: 0,1 0,2 mol
Trong pứng: 0,1 0,1 0,1 0,1 mol
Sau pứng: 0 0,1 01, 0,1 mol
b. \(n_{Zn}=\frac{m}{M}=\frac{6,5}{65}=0,1mol\)
\(100ml=0,1l\)
\(n_{H_2SO_4}=C_M.V=2.0,1=0,2mol\)
\(\rightarrow n_{H_2}=n_{Zn}=0,1mol\)
\(\rightarrow V_{H_2\left(ĐKTC\right)}=n.22,4=0,1.22,4=2,24l\)
c. \(V_{sau}=V_{H_2SO_4}=0,1l\)
\(\rightarrow C_{M_{H_2SO_4\left(dư\right)}}=\frac{n}{V_{sau}}=\frac{0,1}{0,1}=1M\)
Theo phương trình \(n_{ZnSO_4}=n_{Zn}=0,1mol\)
\(\rightarrow C_{M_{ZnSO_4}}=\frac{n}{V_{sau}}=\frac{0,1}{0,1}=1M\)
x y 1 1 A B C D E M
Ta thấy \(\left[BCD\right]=\left[EDC\right]=1\Rightarrow d\left(B,CD\right)=d\left(E,CD\right)\Rightarrow BE||CD\)
Tương tự \(AB||CE,AE||BD\). Gọi giao điểm của \(BD,CE\) là \(M\) thì \(ABME\) là hình bình hành
Suy ra \(\left[BME\right]=\left[BAE\right]=1\)
Ta có \(x+y=\left[CDE\right]=1;\)\(\frac{x}{y}=\frac{MC}{ME}=\sqrt{\frac{x}{\left[BME\right]}}=\sqrt{x}\)
Giải hệ \(\hept{\begin{cases}x+y=1\\\frac{x}{y}=\sqrt{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\x\left(\frac{x}{y^2}-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\\frac{1-y}{y^2}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y\\y^2+y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\) (vì \(x,y>0\))
Vậy diện tích của ngũ giác đó là \(\left[ABCDE\right]=y+3=\frac{-1+\sqrt{5}}{2}+3=\frac{5+\sqrt{5}}{2}.\)
c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\);
\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)
Để Min P = 1 và Max P = 4 thì
\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)
(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3)
(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4)
Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4
Vậy \(P=\frac{-4x+3}{x^2+1}\)
ĐK \(x\ge y\)
Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\)
HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)
Giải (1) ; kết hợp điều kiện => b = 1
=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)
Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4)
Để \(\left(x^2-7x+11\right)^{x^2-13x+42}=1\)
TH1 : \(x^2-7x+11=1\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
TH2 : \(\hept{\begin{cases}x^2-7x+11\ne0\\x^2-13x+42=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-7x+11\ne0\\\left(x-6\right)\left(x-7\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\)
TH3 : \(\hept{\begin{cases}x^2-7x+11=-1\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-3\right)\left(x-4\right)=0\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
=> PT có 6 nghiệm \(x\in\left\{2;3;4;5;6;7\right\}\)
\(\hept{\begin{cases}x=5\\x=3,5\\x=2\end{cases}}\hept{\begin{cases}x=2\\x=4\\x=3\end{cases}}\)
Mình ko viết đc dấu hệ nhiều lần do lỗi latex , mình ghi đc kết quả thôi