K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

DỌC NÊN ĐỌC RẤT KHÓ

ah ko đọc đc luôn!

21 tháng 7 2021

\(G=\left(a-b\right)^4+\left(b-c\right)^4+\left(c-a\right)^4\)

\(G=\left(a^2-2ab+b^2\right)^2+\left(b^2-2bc+c^2\right)^2+\left(c^2-2ac+a^2\right)^2\)

\(G\ge\frac{\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)}{3}\)

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)(BĐT tương đương)

\(G\ge\frac{\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)}{3}\ge\frac{0}{3}=0\)

\(< =>MIN:G=0\)dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

DD
21 tháng 7 2021

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).

\(BC^2=AB^2+AC^2\)(định lí Pythagore) 

\(=6^2+8^2=100\)

\(\Rightarrow BC=10\left(cm\right)\)

\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)

\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)

Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\)

\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)

Xét tam giác \(ACQ\)vuông tại \(A\)

\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)

20 tháng 7 2021

Bài này ai làm thế. Làm sai rồi

21 tháng 7 2021

Bài này em làm sai, đó là đáp án của OLM. Em thật sự không hiểu tại sao!

NM
18 tháng 7 2021

ta có 

\(tanN=\frac{MP}{MN}=\frac{MP}{30}\Rightarrow MP=30tanN=16cm\)

theo pytago ta có : \(NP=\sqrt{30^2+16^2}=34cm\)

ta có \(sinN=\frac{MP}{NP}=\frac{16}{34}=\frac{8}{17}\)

\(cosN=\frac{MN}{NP}=\frac{30}{34}=\frac{15}{17}\) và \(cotN=\frac{1}{tanN}=\frac{15}{8}\)

18 tháng 7 2021

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) Áp dụng đẳng thức ở câu a: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\ge\left(ac+bd\right)^2\)

Dấu "=" xảy ra khi \(\left(ad-bc\right)^2=0\Leftrightarrow ad=bc\)

18 tháng 7 2021

Link tham khảo : https://hoidap247.com/cau-hoi/165024

Nguồn : hoidap247.com

Bài làm : 

a.

(ac + bd)2 + (ad – bc)2

= a2 c2 + 2acbd + b2 d2 + a2 d2 - 2adbc + b2 c2

= a2 c2 + bd2 + ad2 + b2 c2

= ( ac+ a2 d2 ) + ( bd2 + b2 c2 )

= a2 ( c2 + d2 ) + b2 ( c2 + d2 )

= ( a2 + b) . ( c2 + d2 )

Vậy (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b.

( a2 + b2 ) . ( c2 + d2 ) - ( ac + bd )2

= a2 c2 + ad2 + bc2 + bd2 - a2 c - 2acbd - bd2

= a2 d2 + bc2 - 2acbd

= ( ad )- 2ad . bc + ( bc )2

= ( ad - bc )\(\ge\)0

\(\Rightarrow\) (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Vậy (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

17 tháng 7 2021

nko tồn tại