CHO TẬP HỢP
A = { X \(\in\) \(ℕ\) | x \(\le\) 7 }
B = { X \(\in\) \(ℕ\) | x < 7 }
C = { X \(\in\) \(ℕ\) | 6 < x < 7 }
viết tập hợp A, B, C bằng cách liệt kê các phần tử và cho biết số phần tử của tập hợp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2B=2^2+2^3+2^4+...+2^{31}\)
\(\Rightarrow B=2B-B=\left(2^2+2^3+...+2^{31}\right)-\left(2+2^2+...+2^{30}\right)\)
\(=2^{31}-2\). Vậy \(B=2^{31}-2\)
B = 2 + 2^2 + 2^3 + ... + 2^30
=>2B = 2^2 +2^3 + 2^4 + ... + 2^31
=>2B -B =2^2+2^3+2^4+...+2^31 - 2 -2^2 - 2^3 - ... - 2^30
=>B = 2^31 - 2
Vậy B = 2^31 - 2
Gọi số người của đơn vị là \(x\) (\(x\in\) N*; \(x\) < 1000)
Theo bài ra ta có: \(\left\{{}\begin{matrix}x-13⋮20;25;30\\x⋮41\end{matrix}\right.\)
20 =22.5; 25 = 52; 30 = 2.3.5 ⇒ BCNN(20; 25; 30) = 22.52.3=300
\(\Rightarrow\) \(\left\{{}\begin{matrix}x-15⋮300\\x⋮41\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=300k+15\\x⋮41\end{matrix}\right.\) (k \(\in\)N*)
300k + 15 < 1000 ⇒ k < (1000 - 15) : 300 ⇒ k ≤ 3
Mặt khác ta có: \(x\) = 300k + 15 ⋮ 41
⇒ 287k + 13k + 15⋮ 41 ⇒ 13k + 15 ⋮ 41 ⇒ 13k + 15 \(\in\)Ư(41)
13k + 15 \(\in\) {0; 41; 82; ...;} ⇒ k \(\in\) { -\(\dfrac{15}{13}\); 2; \(\dfrac{67}{13}\);...;}
vì k \(\in\) N* và k ≤ 3 ⇒ k = 2
Vậy số người của đơn vị đó là: 300 \(\times\) 2 + 15 = 615 (người)
Kết luận: có 615 người
Thử lại ta có: 615 < 1000 (ok)
615 : 20 = 30 dư 15 ok
615 : 25 = 24 dư 15 ok
615 : 30 = 20 dư 15 ok
615 : 41 = 15 ok
Vậy đáp án thỏa mãn tất cả các điều kiện đề bài nên đáp án 615 người là đúng
Kiến thức cần nhớ về phép chia có dư:
+ Số chia lớn hơn số dư
+ Số bị chia = Số chia nhân thương cộng với số dư
+ Số dư lớn nhất kém số chia 1 đơn vị
+ Số bị chia bớt đi số dư thì phép chia trở thành phép chia hết
Giải
Tổng của số số chia và số bị chia là: 595 - 49 = 546
Gọi số chia là \(x\) (\(x\in\) N; \(x\) ≥ 50)
Thì khi đó số bị chia là: 6\(\times\) \(x\) + 49 = 6\(x\) + 49
Theo bài ra ta có: 6\(x\) + 49 + \(x\) = 546
7\(x\) = 546 - 49
7\(x\) = 497
\(x\) = 497 : 7
\(x\) = 71
Số bị chia là 71 \(\times\) 6 + 49 = 475
Kết luận: Số chia là 71; số bị chia là 475
Thử lại ta có: 71 + 475 + 49 = 595 (ok)
475 : 71 = 6 dư 49 (ok)
b, Gọi số chia là \(x\) ( \(x\in\) N*; \(x>13\)) Thì thương là:
\(\dfrac{200-13}{x}\)=\(\dfrac{187}{x}\)⇒\(x\)\(\in\)Ư(187) ={ 1; 11; 17;187} vì \(x\)> 13⇒ \(x\) = 17;
Số chia là 17; thương là: 187 : 17 = 11
Số chia là 187 thương là: 187 : 187 = 1
Kết luận: Số chia là 17; thương là 11 hoặc số chia là 187 thương là 1
b, Đề cho số dư là số lớn nhất có thể không em?
Số tự nhiên n thỏa mãn \(n^k\left(k\inℕ^∗\right)\) có tận cùng là 9 khi và chỉ khi \(n\) có chữ số tận cùng là 3, 7 hoặc 9.
TH1: Nếu \(n\) có chữ số tận cùng là \(3\) thì ta có nhận xét là \(n^{4k}\) có chữ số tận cùng là 1 với mọi số tự nhiên \(k\). Thật vậy, với \(k=0\) thì \(n^0=1\) có tận cùng là 9. Giả sử khẳng định đúng đến \(k=l\). Với \(k=l+1\) thì \(n^{4\left(l+1\right)}=n^{4l+4}=n^4.n^{4l}=\overline{A1}.\overline{B1}\) có chữ số tận cùng là 1. Vậy khẳng định được chứng minh. Do đó, \(n^{9012}=n^{4.2253}\) có chữ số tận cùng là 1, không thỏa ycbt.
TH2: \(n\) có chữ số tận cùng là 7 thì làm tương tự với TH1, \(n^{4k}\) luôn có chữ số tận cùng là 7 nên không thỏa ycbt.
TH3: \(n\) có chữ số tận cùng là 9 thì \(n^{2k}\) luôn có chữ số tận cùng là 1. Như vậy, không thể có số tự nhiên \(n\) nào thỏa mãn ycbt.
Để olm giúp em nhá
(9989)69 = 996141 = (992)3070.99 = (\(\overline{..01}\))3070.99 = \(\overline{..99}\)
62021 = (65)404.6 = 7776404.6 = \(\overline{...76}.6\) = \(\overline{...56}\)
A=142022.162022=(14.16)2022=2242022= (2242)1001= \(\overline{...76}\)1001=\(\overline{...76}\)
\(@Ans\)
\(\downarrow\)
\(\text{a) 98 - 25,37 - 44,36}\)
\(=98+\left(-25,37\right)+\left(-44,36\right)\)
\(=98+\left[\left(-25,37\right)+\left(-44,36\right)\right]\)
\(=98+(-69,73)\)
\(=28,27\)
\(b)14.32.2+7.25.4+28.33\)
\(=\left(14.2\right).32+\left(7.4\right).25+28.33\)
\(=28.32+28.25+28.33\)
\(=28.\left(32+25+33\right)\)
\(=28.90\)
\(=2520\)
\(c)30.137.2+10.43.6-15.80.4\)
\(=\left(30.2\right).137+\left(10.6\right).43-\left(15.4\right).80\)
\(=60.137+60.43-60.80\)
\(=60.\left(137+43-80\right)\)
\(=60.100\)
\(=6000\)
\(d)126.15-26.14\)
\(=1890-364\)
\(=1526\)
\(\text{( Dấu "." là dấu nhân nhé )}\)
\(\text{Chúc bạn học tốt!!}\)
\(27.332+93.43+57.61+69.57\\ =27.332+93.43+57.\left(61+69\right)\\ =27.332+93.43+57.130\\ =8964+3999+7410=20373\\ 34.75+75.66-65.100\\ =\left(34+66\right).75-65.100\\ =100.75-65.100\\ =100.\left(75-65\right)\\ =100.10=1000\\ \left(456.11+912\right).37:13:74\\ =5928:13:\left(74:37\right)\\ =456:2=228\\ 6^2:4.3+2.5^2\\ =36:4.3+2.25\\ =9.3+50=27+50=77\\ 5.4^2-18:3^2\\ =5.16-18:9\\ =80-2=78\\\left[\left(315+372\right).3+\left(372+315\right).7\right]:\left(26.13+74.14\right)\\ =687.\left(3+7\right):\left(338+1036\right)\\ 687.10:1374\\ =6870:1374=5\\ 12:\left\{390:\left[500-\left(125+35.7\right)\right]\right\}\\ =12:\left[390:\left(500-370\right)\right]\\ =12:\left(390:130\right)=12:3=4\\ 192000-\left(1500.2+1800.3+1800.2:3\right)\\ =192000-\left(3000+5400+1200\right)\\ =192000-9600=182400\)
A= {0; 1; 2; 3; 4; 5; 6; 7 } A có 8 phần tử
B= {0; 1; 2; 3; 4; 5; 6 } B có 7 phần tử
C= \(\varnothing\) C có 0 phần tử