Nhờ các bạn giúp tui á. Thanks!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+4\sqrt{9-x^2}\)(ĐK: \(-3\le x\le3\))
\(=x^2+2.2.\sqrt{9-x^2}\le x^2+2^2+\left(9-x^2\right)=13\)
Dấu \(=\)xảy ra khi \(2=\sqrt{9-x^2}\Leftrightarrow x=\pm\sqrt{5}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình thì dư đoán điểm rơi \(a=b=c=1\) rồi, nhưng nháp mãi vẫn không ra được.
\(\frac{a}{b^3+ab}\)=\(\frac{a^2}{b^3a+a^2b}\)
tương tự thì ta có S= \(\frac{a^2}{b^3a+a^2b}\) + \(\frac{b^2}{c^3b+b^2c}\) + \(\frac{c^2}{a^3c+ac^2}\)
áp dụng bất dẳng thức cô si s goát,ta có
S=\(\frac{a^2}{b^3a+a^2b}\)+ \(\frac{b^2}{c^3b+b^2c}\)+ \(\frac{c^2}{a^3c+ac^2}\)\(\ge\) \(\frac{\left(a+b+c\right)^2}{b^3a+a^2b+c^3b+b^2c+a^3c+c^2a}\)
cái mẫu mk chx nghĩ ra phân tích ra sao nx,tí nghĩ nốt
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
![](https://rs.olm.vn/images/avt/0.png?1311)
I) Hình bạn tự vẽ nha
Ta có DY//BH ; YH//DB
=> DYHB hình bình hành => DY = HB
Tương tự được ZE = FC
mà \(\frac{BH}{BC}=1-\frac{HC}{BC}=1-\frac{1}{\sqrt{2}}\)\(\left(\Delta HIC\approx\Delta BAC;\frac{AB}{IH}=\sqrt{2}\right)\)(1)
Tương tự được \(\frac{FC}{BC}=1-\frac{BF}{BC}=1-\frac{1}{\sqrt{2}}\)(2)
Từ (1) ; (2) => BH = FC hay DY = ZE
![](https://rs.olm.vn/images/avt/0.png?1311)
TL :
\(\sqrt[3]{8+3\sqrt{21}}+\sqrt[3]{8-3\sqrt{21}}=\sqrt{8+3}+\sqrt{8-3}=5.\)
HT
Đặt \(\hept{\begin{cases}a=8+3\sqrt{21}\\b=8-3\sqrt{21}\end{cases}}\), khi đó \(x=\sqrt[3]{8+3\sqrt{21}}+\sqrt[3]{8-3\sqrt{21}}=\sqrt[3]{a}+\sqrt[3]{b}\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3=\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+3\left(\sqrt[3]{a}\right)^2.\sqrt[3]{b}+3\sqrt[3]{a}.\left(\sqrt[3]{b}\right)^2\)
\(=a+b+3\sqrt[3]{a^2b}+3\sqrt[3]{ab^2}\)
Mà \(ab=\left(8+3\sqrt{21}\right)\left(8-3\sqrt{21}\right)=8^2-\left(3\sqrt{21}\right)^2=64-189=-125\)
\(\Rightarrow x^3=a+b+3\sqrt[3]{a.\left(-125\right)}+3\sqrt[3]{b.\left(-125\right)}=a+b+3.\left(-5\right)\sqrt[3]{a}+3.\left(-5\right)\sqrt[3]{b}\)
\(=a+b-15\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)\(=a+b-15x\)
Lại có \(a+b=8+3\sqrt{21}+8-3\sqrt{21}=16\)nên ta có \(x^3=16-15x\)\(\Leftrightarrow x^3+15x-16=0\)\(\Leftrightarrow x^3-x+16x-16=0\)\(\Leftrightarrow x\left(x^2-1\right)+16\left(x-1\right)=0\)\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+16\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+16\right]=0\)\(\Leftrightarrow\left(x-1\right)\left(x^2+x+16\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x+16=0\left(\cdot\right)\end{cases}}\)
Vì \(x^2+x+16=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{63}{4}=\left(x+\frac{1}{2}\right)^2+\frac{63}{4}\ge\frac{63}{4}>0\)nên \(\left(\cdot\right)\)vô nghiệm.
Vậy \(x=1\)hay \(\sqrt[3]{8+3\sqrt{21}}+\sqrt[3]{8-3\sqrt{21}}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để \(\left(x^2-7x+11\right)^{x^2-13x+42}=1\)
TH1 : \(x^2-7x+11=1\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
TH2 : \(\hept{\begin{cases}x^2-7x+11\ne0\\x^2-13x+42=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-7x+11\ne0\\\left(x-6\right)\left(x-7\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\)
TH3 : \(\hept{\begin{cases}x^2-7x+11=-1\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-3\right)\left(x-4\right)=0\\x^2-13x+42⋮2\\x^2-13x+42\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
=> PT có 6 nghiệm \(x\in\left\{2;3;4;5;6;7\right\}\)
Ta có: \(x+y+z=1\)mà \(x,y,z\)không âm nên \(0\le x,y,z\le1\)
suy ra \(x^2\le x,y^2\le y,z^2\le z\)
\(S=\sqrt{3x^2 +1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=x+y+z+3=4\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=1\\y=z=0\end{cases}}\)và các hoán vị.