Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ \(8\) bước robot đi được:
\(5.\left(8-2\right)=30\left(dm\right)\)
Ta có: \(126:8=15\left(dư.6\right)\) Khoảng cách từ \(A\) đến \(B\) dài: \(30.15+5.6=480\left(dm\right)\) Vậy...Cứ 88 bước robot đi được:
5.(8−2)=30(��)5.(8−2)=30(dm)
Ta có: 126:8=15(�ư.6)126:8=15(dư.6)
Khoảng cách từ �A đến �B dài: 30.15+5.6=480(��)
30.15+5.6=480(dm)
Vậy...
\(12=2^2.3\)
\(36=2^2.3^2\)
\(\RightarrowƯCLN\left(12;36\right)=2^2.3=12\)
\(\RightarrowƯC\left(12;36\right)=Ư\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Gọi số cần tìm là \(x\)\(\left(đk:x\inℕ^∗\right)\)
\(12⋮x\)
\(36⋮x\)
\(x\) lớn nhất
\(\Rightarrow x\inƯC\left(12,36\right)\)
Ta có:
\(12=2^2.3\)
\(36=2^2.3^2\)
\(\RightarrowƯCLN\left(12,36\right)=2^2.3=12\)
\(\RightarrowƯC\left(12,36\right)=Ư\left(12\right)=\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
\(\RightarrowƯC\left(12,36\right)=\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
Dùng Cách phối hợp nhiều phương pháp em nhé!
Đó là phương pháp chặn kết hợp với tìm nghiệm nguyên.
Gọi số đó là A thì theo bài ra ta có:
A = 2023.k + 228 (k \(\in\) N* )
A = 2024n + 218 (n \(\in\) N*)
⇒ 2023k + 228 = 2024n + 218
⇒ 2024n + 218 - 228 = 2023k
⇒ 2024n - 10 = 2023k
⇒ k = \(\dfrac{2024n-10}{2023}\)
⇒ k = n + \(\dfrac{n-10}{2023}\)
vì k nguyên nên n - 10 ⋮ 2023
⇒n - 10 \(\in\) B(2023) = {0; 2023;...;}
⇒ n \(\in\) {10; 2033;..;} (1)
Vì A là số có 5 chữ số nên A ≤ 99999
⇒ 2024n + 218 ≤ 99999
2024n ≤ 99999 - 218
2024n ≤ 99781
n ≤ 99781 : 2024
n ≤ 49,298 (2)
Kết hợp 1 và (2) ta có: n = 10
Vậy số cần tìm là: 2024 x 10 + 218 = 20458
Kết luận:...
Lời giải:
$12A=1.5.12+5.9.(13-1)+9.13(17-5)+13.17(21-9)+....+77.81(85-73)+81.85(89-77)$
$=60+(5.9.13+9.13.17+13.17.21+...+77.81.85+81.85.89)-(1.5.9+5.9.13+9.13.17+...+73.77.81+77.81.85)$
$=60+81.85.89 - 1.5.9=612780$
A = 1.5 + 5.9 + 9.13 + ... + 81.85
A = \(\dfrac{12}{12}\)(1.5 + 5.9 + 9.13 + 81.85)
A = \(\dfrac{1}{12}\).(1.5.12 + 5.9.12.+ 9.13.12 + ...+ 81.85.12]
A = \(\dfrac{1}{12}\).[1.5.(9 + 3) + 5.9.(13 - 1) + 9.13.(17 - 5) +...+ 81.85.(89 - 77)]
A = \(\dfrac{1}{12}\).[1.5.9 + 1.3.5 + 5.9.13 - 5.9.1 + 9.13.17 - 9.13.5 + ...+ 81.85.89 - 81.85.77]
A = \(\dfrac{1}{12}\).[1.3.5 + 81.85.89]
A = \(\dfrac{1}{12}\).[15 + 612765]
A = \(\dfrac{1}{12}\).612780
A = 51065
Ta có \(a^n-a^{n-4}=a^{n-4}\left(a^4-1\right)=N\)
Ta thấy vì \(a^{n-4}\) và \(a^4-1\) không cùng tính chẵn lẻ nên \(N⋮2\)
Mặt khác, ta thấy nếu \(a⋮3\) thì hiển nhiên \(N⋮3\). Nếu \(a⋮̸3\) thì \(a^2\) chia 3 dư 1 (tính chất số chính phương), dẫn tới \(a^4=\left(a^2\right)^2\) chỉ có thể chia 3 dư 1 hay \(a^4-1⋮3\) với mọi \(a⋮̸3\). Vậy \(N⋮3\)
Ta cần chứng minh \(N⋮5\).
Dễ thấy điều này đúng nếu \(a⋮5\)
Với \(a⋮̸5\), khi đó \(a^2\) chia 5 dư 1 hoặc 4 (tính chất của số chính phương), suy ra \(a^4=\left(a^2\right)^2\) chia 5 chỉ có thể dư 1 (cũng là tính chất của số chính phương). Dẫn đến \(a^4-1⋮5\) với mọi \(a⋮̸5\). Vậy \(N⋮5\).
Do đó \(N⋮2.3.5=30\) (đpcm)
a; \(x\) + 6 ⋮ \(x\) + 1 (\(x\) ≠ - 1)
\(x\) + 1 + 5 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-6; -2; 0; 4}
\(x\) + 6 ⋮ \(x\) + (-1) (\(x\) ≠ 1)
\(x\) + - 1 + 7 ⋮ \(x\) - 1
7 ⋮ \(x\) - 1
\(x\) - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
\(x\) \(\in\) {-6; 0; 2; 8}
b; \(x\) + 6 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)
\(x\) - 2 + 8 ⋮ \(x\) - 2
8 ⋮ \(x\) - 2
\(x\) - 2 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
\(x\) \(\in\) {-6; -2; 0; 1; 3; 4; 10}
\(x\) + 6 ⋮ \(x\) + (-2)
\(x\) + 6 ⋮ \(x\) - 2
giống với ý trên
Bài 1:
1. $=[(-37)+37]+(14+26)=0+40=40$
2. $=[(-24)+24]+6+10=0+6+10=16$
3. $=[15+(-25)]+[23+(-23)]=-10+0=-10$
4. $=[60+(-50)]+[33+(-33)]=10+0=10$
5. $=-(16+14)+[(-209)+209]=-30+0=-30$
Bài 1:
6. $=-(11+12+13)+36=-36+36=0$
7. $=[(-16)+16]-(34-24)=0-10=-10$
8. $=(25-25)+(37-37)-48=0+0-48=-48$
9. $=(2575-2576)+(37-29)=-1+8=7$
10. $=(34-14)+(35-15)+(36-16)+(37-17)=20+20+20+20=20.4=80$
11. $=64-(-3)+1-90+(-5)=64+3+1-90-5=68-90-5=-27$
12. $=16.8-7.8-13=8(16-7)-13=8.9-13=72-13=59$
mình cũng không biết nữa thầy giáo mình cho vậy á
a.
\(4x-3⋮x-2\Rightarrow4x-8+5⋮x-2\)
\(\Rightarrow4\left(x-2\right)+5⋮x-2\)
Do \(4\left(x-2\right)⋮x-2\Rightarrow5⋮x-2\Rightarrow x-2=Ư\left(5\right)\)
\(\Rightarrow x-2=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x=\left\{-3;1;3;7\right\}\)
b.
\(xy-2x+2y=5\)
\(\Leftrightarrow xy-2x+2y-4=5-4\)
\(\Leftrightarrow x\left(y-2\right)+2\left(y-2\right)=1\)
\(\Leftrightarrow\left(x+2\right)\left(y-2\right)=1\)
Ta có bảng giá trị:
Vậy \(\left(x;y\right)=\left(-3;1\right);\left(-1;3\right)\)