Cho a,b,c là các số thực dương. Chứng minh:
\(\frac{a}{b+c}+\frac{25b}{c+a}+\frac{4c}{a+b}>2\) (HSG Vĩnh Phúc 2020 - 2021)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(S=x+y+\frac{1}{2x}+\frac{2}{y}\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\left(\frac{1}{2}x+\frac{1}{2}y\right)\)
\(=\left(\frac{1}{2}x+\frac{1}{2x}\right)+\left(\frac{1}{2}y+\frac{2}{y}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{2}x\cdot\frac{1}{2x}}+2\sqrt{\frac{1}{2}y\cdot\frac{2}{y}}+\frac{1}{2}\cdot3\)( áp dụng bđt AM-GM và giả thiết x + y ≥ 3 )
\(=1+2+\frac{3}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi x = 1 , y = 2
Vậy MinS = 9/2, đạt được khi x = 1 , y = 2
\(ĐK:x\ge1\)
\(x^2-3x+2\sqrt{x-1}+1=0\Leftrightarrow x^2-3x+1=-2\sqrt{x-1}\)\(\Leftrightarrow x^2-2x=\left(x-1\right)-2\sqrt{x-1}\Leftrightarrow\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}-2\right)=0\)
Th1: \(x=\sqrt{x-1}\Leftrightarrow x^2=x-1\Leftrightarrow x^2-x+1=0\)(Vô nghiệm vì \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\inℝ\))
Th2: \(x+\sqrt{x-1}-2=0\Leftrightarrow\sqrt{x-1}=2-x\)(với \(1\le x\le2\))
\(\Leftrightarrow x-1=x^2-4x+4\Leftrightarrow x^2-5x+5=0\)(*)
Giải (*) kết hợp với điều kiện ta chỉ có 1 nghiệm \(x=\frac{5-\sqrt{5}}{2}\)
Vậy nghiệm duy nhất của phương trình là\(\frac{5-\sqrt{5}}{2}\)
giả sử \(3^n+63=k^2\)
- Nếu n lẻ \(\Rightarrow3^n+63\equiv3+63\equiv2\left(mod4\right)\Rightarrow k^2\equiv2\left(mod4\right)\) (loại)
Đặt n=2m ( \(m\inℕ\)
- Nếu n chẵn \(\Rightarrow k^2-3^{2m}=63\Leftrightarrow\left(k-3^m\right)\left(k+3^m\right)=7.9\)
Vì \(k+3^m=k-3^m\left(mod3\right)\Rightarrow k+3^m,k-3^m\) đều chia hết cho 3
Lại có: \(k-3^m< k+3^m\Leftrightarrow\hept{\begin{cases}k-3^m=3\\k+3^m=3.7\end{cases}}\)
Từ đó tìm đc k=12, m=2 => n=4
 I C B D O E
.Ta có :ICIC là tiếp tuyến của (O)
\(\Rightarrow\widehat{CIE}=\widehat{IBC}\)
\(\Rightarrow\)ΔICE∼ΔIBC(g.g)\(\Rightarrow\)
IEIC=ICIB→ICE^=IBC^→ΔICE∼ΔIBC(g.g)→IEIC=ICIB
\(\Rightarrow\)IC2=IE.IB→IC2=IE.IB
Ta có : BD//AC\(\Rightarrow\widehat{IAE}=\widehat{EDB}=\widehat{ABE}\)
\(\Rightarrow\)ΔAIE∼ΔBIA(g.g)\(\Rightarrow\)
AIBI=IEIA\(\Rightarrow\)
IA2=IB.IE→ΔAIE∼ΔBIA(g.g)→AIBI=IEIA→IA2=IB.IE
→IA2=IC2→IA=IC→I→IA2=IC2→IA=IC→I là trung điểm AC
Dễ có IC là tiếp tuyến của đường tròn nên IC2 = IB.IE (1)
Theo tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có: ^EBA = ^BDA
Lại có: ^BDA = ^DAC (BD//AC, hai góc so le trong)
Từ đó suy ra ^EBA = ^DAC
∆AIE và ∆BIA có: ^AIB là góc chung, ^EBA = ^DAC (cmt) nên ∆AIE ~ ∆BIA (g.g)
=>\(\frac{IA}{IE}=\frac{IB}{IA}\Rightarrow IA^2=IB.IE\)(2)
Từ (1) và (2) suy ra IA2 = IC2 hay IA = IC
Vậy I là trung điểm của AC (đpcm)
Kẻ tiếp tuyến tại A. Gọi E là giao điểm của tiếp tuyến tại A với dây BC.
Ta có: EM=EA và \(\widehat{EAM}=\widehat{EMA}\)( tính chất 2 tiếp tuyến cắt nhau)
hay \(\widehat{EAB}+\widehat{BAM}=\widehat{ECA}+\widehat{CAM}\)
Mà \(\widehat{EAB}=\widehat{ECA}\)
=> \(\widehat{BAM}=\widehat{CAM}\) hay AM là phân giác góc BAC( đpcm)
Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D
Suy ra: AD ⊥ BD
Tứ giác BDCE là hình thoi nên EC // BD
Suy ra: EC ⊥ AD (1)
Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I
Suy ra: AI ⊥ CE (2)
Từ (1) và (2) suy ra AD trùng với AI
Vậy D, A, I thẳng hàng.
Đặt \(\left(b+c,c+a,a+b\right)\rightarrow\left(x,y,z\right)\)thì \(x,y,z>0\)và \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)
Bất đẳng thức cần chứng minh trở thành: \(\frac{y+z-x}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{4\left(x+y-z\right)}{2z}>2\)
Xét \(VT=\left(\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}\right)+\left(\frac{25z}{2y}+\frac{25x}{2y}-\frac{25}{2}\right)+\left(\frac{2x}{z}+\frac{2y}{z}-2\right)\)\(=\left(\frac{y}{2x}+\frac{25x}{2y}\right)+\left(\frac{25z}{2y}+\frac{2y}{z}\right)+\left(\frac{z}{2x}+\frac{2x}{z}\right)-15\)\(\ge2\sqrt{\frac{y}{2x}.\frac{25x}{2y}}+2\sqrt{\frac{25z}{2y}.\frac{2y}{z}}+2\sqrt{\frac{z}{2x}.\frac{2x}{z}}-15=2\)(BĐT Cauchy)
Đẳng thức xảy ra khi \(10x=2y=5z\)hay \(10\left(b+c\right)=2\left(c+a\right)=5\left(a+b\right)\)\(\Rightarrow\hept{\begin{cases}10b+8c=2a\\5b+10c=5a\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=10b+8c\\2a=2b+4c\end{cases}}\Leftrightarrow8b+4c=0\)(Vô lí vì 8b + 4c > 0 với mọi b,c dương)
Vậy dấu bằng không xảy ra
em chao chi a