K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

Ta có: \(xy-5=2y^2\)            \(\left(ĐK:x,y\inℤ\right)\)

    \(\Leftrightarrow xy-2y^2=5\)

    \(\Leftrightarrow y.\left(x-2y\right)=5=\left(-1\right).\left(-5\right)=1.5\)

\(\hept{\begin{cases}y=-1\\x-2y=-5\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-7\\y=-1\end{cases}}\)\(\left(TM\right)\)

\(\hept{\begin{cases}y=-5\\x-2y=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-11\\y=-5\end{cases}}\)\(\left(TM\right)\)

\(\hept{\begin{cases}y=1\\x-2y=5\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)\(\left(TM\right)\)

\(\hept{\begin{cases}y=5\\x-2y=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=11\\y=5\end{cases}}\)\(\left(TM\right)\)

Vậy \(\left(x;y\right)\in\left\{\left(-7;-1\right),\left(-11;-5\right),\left(7;1\right),\left(11;5\right)\right\}\)

23 tháng 1 2021

\(xy-5=2y^2\) \(\Leftrightarrow xy-2y^2=5\)\(\Leftrightarrow y\left(x-2y\right)=5\)

Vì \(x,y\inℤ\)\(\Rightarrow y\)và \(x-2y\)là ước của 5

Lập bảng giá trị ta có

\(y\)\(-5\)\(-1\)\(1\)\(5\)
\(x-2y\)\(-1\)\(-5\)\(5\)\(1\)
\(x\)\(-11\)\(-7\)\(7\)\(11\)

Vậy nghiệm của phương trình là \(\left(x;y\right)=\left(-11;-5\right),\left(-7;-1\right),\left(7;1\right),\left(11;5\right)\)

23 tháng 1 2021

Bài này căng đấy =))

C E B A D O I H

a) Do AB là tiếp tuyến của (O) với B là tiếp điểm (gt)

nên : \(AB\perp OB\)( tc tiếp tuyến )

\(\Rightarrow\widehat{ABO}=90^o\)(1)

Do H là trung điểm của dây DE (gt)

nên : \(OH\perp DE\)( liên hệ giữa đường kính và dây )

\(\Rightarrow\widehat{AHO}=90^o\)(2)

- Xét tứ giác ABOH ta có :

+) \(\widehat{ABO}\)và  \(\widehat{AHO}\)là hai góc đối diện

+) \(\widehat{ABO}+\widehat{AHO}=90^o+90^o=190^o\)( do (1) và (2))

=> ABOH là tứ giác nội tiếp 

=> 4 điểm A , B , O , H thuộc cùng 1 đường tròn ( đpcm )

b) Ta có : +) \(\widehat{B_1}\)là góc giữa tia tiếp tuyến và dây cung chắn cung \(\widehat{BD}\)của (O)

+) \(\widehat{E_1}\)là góc nội tiếp chắn cung \(\widehat{BD}\)của (O)

\(\Rightarrow\widehat{B_1}=\widehat{E_1}=\frac{1}{2}sđ\widebat{BD}\)( tính chất )

Xét 2 tam giác : ABD và AEB có :

\(\widehat{B_1}=\widehat{E_1}\left(cmt\right)\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{EB}\)( tỉ số đồng dạng )

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{BE}\left(đpcm\right)\)

23 tháng 1 2021

P/s : câu a) có nhiều cách chứng minh khác nữa bạn nhé . Bạn làm cách này có thể hay hơn là vì những gì đã nói ở trên về phương pháp trình bày và đồng thời chứng minh cũng áp dụng được cho nhiều bài khác ( Khi \(\widehat{ABO}\)và \(\widehat{AHO}\)không phải là những góc 90 độ )

NM
25 tháng 1 2021

ta có 

\(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}\Rightarrow7x=2\left(2m-1\right)+3m+2=7m\Rightarrow x=m\Rightarrow y=m+1}\)

a. khi m=1 ta có hệ nghiệm là \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

b. để \(x^2+y^2=5\Leftrightarrow m^2+\left(m+1\right)^2=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

c.\(x-3y>0\Leftrightarrow m-3\left(m+1\right)>0\Leftrightarrow-2m-3>0\Leftrightarrow m< -\frac{3}{2}\)

23 tháng 1 2021

\(A=\frac{1}{2}\sqrt{16.3}-3\frac{\sqrt{17.3}}{\sqrt{17}}+3\sqrt{\frac{4}{3}}\)

\(=2\sqrt{3}-3\sqrt{3}+3.2\frac{1}{\sqrt{3}}\)

\(=2\sqrt{3}-3\sqrt{3}+2\sqrt{3}=\sqrt{3}\)

23 tháng 1 2021

\(A=\frac{1}{2}\sqrt{48}-\frac{3\sqrt{51}}{\sqrt{17}}+3\sqrt{1\frac{1}{3}}\)

\(=\sqrt{\frac{1}{4}.48}-3\sqrt{3}+3\sqrt{\frac{4}{3}}\)

\(=\sqrt{12}-3\sqrt{3}+3\sqrt{\frac{4}{3}}\)

\(=\sqrt{3.4}-3\sqrt{3}+3\sqrt{3.\frac{4}{9}}\)

\(=2\sqrt{3}-3\sqrt{3}+2\sqrt{3}=\sqrt{3}\)

5 tháng 3 2022

Phân tích: Giả sử đã dựng được điểm B thỏa mãn đề bài.

Gọi D' là điểm đối xứng với D qua d. Dễ thấy \widehat{ACB}=\widehat{ADB}=\widehat{AD'B}ACB=ADB=ADB, do đó B thuộc đường tròn ngoại tiếp tam giác ACD'.

Cách dựng (tóm tắt):

- Dựng D';

- Dựng đường tròn (T) ngoại tiếp tam giác ACD';

- B là giao điểm khác A của (T) và d.

27 tháng 2 2021

CD

 

27 tháng 2 2022

Quỹ tích điểm I là CD