a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy
chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*
Áp dụng vào bài toán ta được :
2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)
<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca
Dấu = xảy ra <=>a=b=c
\(a^2+b^2\ge ab+bc+ca.\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)
2 biến giải kiểu gì?
Sửa đề: \(x\left(x+1\right)\left(x+2\right)+9=x\left(x^2+2\right)\)
<=> \(x^3+3x^2+2x+9=x^3+2x\)
<=> \(3x^2=-9\)
Vì \(3x^2\ge0\forall x\)
Mà \(3x^2=-9\) (vô lí)
=> \(x\in\varnothing\)
\(P=\left(\frac{1}{x}+\frac{1}{y}\right).\sqrt{1+x^2y^2}\)
\(\rightarrow P>2.\sqrt{\frac{1}{x}.\frac{1}{y}}.\sqrt{1+\left(xy\right)^2}\)
\(\rightarrow P>2.\sqrt{\frac{1}{xy}}.\sqrt{1+\left(xy\right)^2}\)
\(\rightarrow P>2\sqrt{\frac{1}{xy}+xy}\)
Đặt \(xy=t\)
\(\rightarrow P>2\sqrt{\frac{1}{t}+t}\)
Ta có :
\(1>x+y>2\sqrt{xy}\)
\(\rightarrow\sqrt{xy}< \frac{1}{2}\)
\(\rightarrow xy< \frac{1}{4}\)
\(\rightarrow t< \frac{1}{4}\)
Lại có :
\(\frac{1}{t}+t=\frac{15}{16t}+\left(\frac{1}{16}+t\right)\)
\(\rightarrow\frac{1}{t}+t>\frac{15}{16.\frac{1}{4}}+2\sqrt{\frac{1}{16}.t}\)
\(\rightarrow\frac{1}{t}+t>\frac{17}{4}\)
\(\rightarrow B>2.\sqrt{\frac{17}{4}}\)
\(\rightarrow B>\sqrt{17}\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Không vẽ hình vì sợ duyệt.
Kẻ đường phân giác AD của \(\Delta ABC\).
Dễ thấy \(\widehat{BAD}=\widehat{CAD}=\widehat{B}=\frac{\widehat{BAC}}{2}\)
Từ đó dễ dàng chứng minh \(\Delta ABD\)cân tại D \(\Rightarrow AD=BD\)
\(\Delta CAD\)và \(\Delta CBA\)có:
\(\widehat{C}\)chung và \(\widehat{CAD}=\widehat{B}\left(=\frac{\widehat{BAC}}{2}\right)\)\(\Rightarrow\Delta CAD~\Delta CBA\left(g.g\right)\)
\(\Rightarrow\frac{AC}{BC}=\frac{CD}{AC}=\frac{AD}{AB}\)\(\Rightarrow\hept{\begin{cases}AC^2=BC.CD\\AB.AC=BC.AD=BC.BD\left(AD=BD\right)\end{cases}}\)
\(\Rightarrow AC^2+AB.AC=BC.CD+BC.BD\)\(=BC\left(CD+BD\right)\)\(=BC.BC\)\(=BC^2\)
Ta có đpcm.
) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b ∈
N* ) ; ( a ; b ) = 1
⟹
b√2=a
⟹
b2.2=a2
⟹
a2 chia hết cho 2 ; mà 2
là số nguyên tố
⟹
a chia hết cho 2
⟹
a2 chia hết cho 4
⟹
b2.2 chia hết cho 4
⟹
b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2
⟹
(a;b)=2 mâu thuẫn với (a;b)=1
⟹
Điều giả sử sai
⟹
√2 là số vô tỉ
\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x-4}{x-2}\)
a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12
A = ( 1002 - 992 ) + ( 982 - 972 ) + ... + ( 22 - 12 )
A = ( 100 - 99 )(100 + 99 ) + (98 - 97 )(98 + 97) + ... + (2-1)(2+1)
A = 199 + 195 + .... + 3
Tổng A có ss hạng là:
( 199 - 3 ) : 4 + 1 = 50 ( số )
Tổng A bằng:
( 199 + 3 ) x 50 : 2 = 5050
c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2
C = a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + b2 + c2 + 2ab - 2bc - 2ac - 2(a2 + 2ab + b2)
C = 2a2 + 2b2 + 2c2 + 4ab - 2a2 -4ab - 2b2
C = 2c2
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
B = (22 - 1)(22 + 1)(24 + 1) ... (264 + 1) + 12
B = ( 24 - 1)(24 + 1)... (264 + 1) + 12
B = (28 - 1)... (264 + 1) + 12
B = (28 - 1)(28+1)... (264 + 1) + 12
B = (216-1)(216+1)... (264 + 1) + 12
B = (232 - 1)(232+1)... (264 + 1) + 12
B = (264 - 1)(264 +1)+1
B = 2128 - 1 + 1
B = 2128