Cho ΔABC có AB = AC. Gọi M là trung điểm BC.
a) Chứng minh ΔABM = ΔACM.
b) Trên cạnh AM lấy điểm K bất kỳ. Chứng minh KB = KC.
c) Tia BK cắt cạnh AC tại F, tia CK cắt cạnh AB tại E. Chứng minh EF // CB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G\)\(=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(G=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Đặt S = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
Ta thấy : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};......;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
=> S < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
=> S <\(1-\frac{1}{n}\)
Thay S vào G ta có :
G < \(\frac{1}{4}\left(1-\frac{1}{n}\right)\)
G< \(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)( đpcm )
Học tốt
#Dương
Gọi ba máy cày là \(x;y;z\)
Theo đề bài :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=x+y+z=18\)
Theo dãy tỉ số chất bằng nhau là :
\(\frac{x}{3}+\frac{y}{4}+\frac{z}{6}=\frac{x+y+z}{13}=\frac{18}{13}=1.3846\)
Vậy đề sai
a, Xét tam giác ABM và tam giác ACM có :
AM là cạnh chung
AB=AC(gt) \(\Rightarrow\)tam giác ABM= tam giác ACM ( c-c-c )
BM=MC( M là trung điển của BC)
b, Vì AB=AC(gt) => tam giác ABC cân tại A
Lại có AMlà trung điểm của BC
=> AM vuông góc với BC
Xét tam giác KMB và tam giác KMC có
KM là cạnh chung
góc KMB=góc KMC ( =900)
=> tam giác KMB=tam giác KMC(c-g-c) => KB=KC( 2 cạnh tương ứng )
c, Vì tam giác KMB=tam giác KMC ( câu b )
=> góc B = góc C =>góc CEF = góc B mà chúng ở vị trí dongds vị => EF // CB