so sánh \(\frac{\sqrt{21}-\sqrt{13}}{35-2\sqrt{273}}+\frac{\sqrt{10}-\sqrt{5}}{16-10\sqrt{2}}\)với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét phân thức tổng quát sau: \(a^4+\frac{1}{4}=\frac{4a^4+1}{4}=\frac{\left(4a^4+4a^2+1\right)-4a^2}{4}=\frac{\left(2a^2+1\right)^2-\left(2a\right)^2}{4}\)
\(=\frac{\left(2a^2-2a+1\right)\left(2a^2+2a+1\right)}{4}=\frac{\left[\left(a-1\right)^2+a^2\right]\left[a^2+\left(a+1\right)^2\right]}{4}\)
Khi đó ta sẽ có:
\(1^4+\frac{1}{4}=\frac{\left(0^2+1^2\right)\left(1^2+2^2\right)}{4}\) ; \(2^4+\frac{1}{4}=\frac{\left(1^2+2^2\right)\left(2^2+3^2\right)}{4}\)
; .... ; \(2006^4+\frac{1}{4}=\frac{\left(2005^2+2006^2\right)\left(2006^2+2007^2\right)}{4}\)
=> \(S=\frac{\frac{\left(0^2+1^2\right)\left(1^2+2^2\right)...\left(2004^2+2005^2\right)\left(2005^2+2006^2\right)}{4^{1003}}}{\frac{\left(1^2+2^2\right)\left(2^2+3^2\right)...\left(2005^2+2006^2\right)\left(2006^2+2007^2\right)}{4^{1003}}}=\frac{1}{2006^2+2007^2}\)

a, Theo bài ra ta có : \(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Thay m = 1 vào hệ phương trình trên ta có :
\(\hept{\begin{cases}x+4y=9\\x+y=8\left(2\right)\end{cases}}\)Xét hiệu 2 phương trình : \(3y=1\Leftrightarrow y=\frac{1}{3}\)
Thay vào (2) ta được : \(x+\frac{1}{3}=8\Leftrightarrow x=8-\frac{1}{3}=\frac{23}{3}\)
Vậy \(x=\frac{23}{3};y=\frac{1}{3}\)
b, Vì hệ phương trình có nghiệm ( 1 ; 3 ) nên thay x = 1 ; y = 3 vào hệ phương trình trên :
\(\hept{\begin{cases}m+12=9\\3m=8\end{cases}\Leftrightarrow}m=-3;m=\frac{8}{3}\)
Vậy \(m=-3;m=\frac{8}{3}\)
a, Vì m = 1 thay vào hệ pt, ta có pt sau
\(\hept{\begin{cases}x+4y=9\\x+y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=9-4y\left(1\right)\\9-4y+y=8\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow3y=1\)
\(\Rightarrow y=\frac{1}{3}\)
Thay vào pt ( 1 ), ta có :
\(x=9-4.\frac{1}{3}=\frac{23}{3}\)
Vậy nghiệm ( x ; y ) pt là\(\left(\frac{23}{3};\frac{1}{3}\right)\)
b, Vì pt có nghiệm là ( 1 ; 3 ) hay x = 1 ; y = 3
Thay vào pt, ta có :\(\hept{\begin{cases}m+12=9\\1+3m=8\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\\m=\frac{7}{3}\end{cases}}\)
Vậy ...

\(A=\frac{m^2+7m+14}{\left(m+2\right)^2}\Rightarrow A\left(m+2\right)^2=m^2+7m+14\)
\(\Leftrightarrow\left(A-1\right)m^2+\left(4A-7\right)m+4A-14=0\)
- \(A-1=0\Leftrightarrow A=1\): \(m=\frac{-10}{3}\).
- \(A-1\ne0\): \(\Delta=\left(4A-7\right)^2-4\left(4A-14\right)\left(A-1\right)=16A-7\)
để phương trình có nghiệm thì \(\Delta\ge0\Leftrightarrow A\ge\frac{7}{16}\).
Vậy \(minA=\frac{7}{16}\).


Theo giả thiết, ta có: \(\frac{x}{1+x}+\frac{2y}{1+y}=1\Leftrightarrow\frac{2y}{1+y}=1-\frac{x}{1+x}=\frac{1}{x+1}\)\(\Leftrightarrow2y\left(x+1\right)=y+1\Leftrightarrow2xy^2=-y^2+y=-\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow xy^2\le\frac{1}{8}\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)