để đưa 180 học sinh đi tham quan có thể dùng 2 loại xe. nếu dùng xe to thì cần ít hơn 2 xe so với xe nhỏ. biết mỗi xe to nhiều hơn xe nhỏ 15 chỗ . tính số xe to hoặc xe nhỏ cần dùng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số người dự họp và số ghế có trong phòng lần lượt là \(a,b\)(\(a,b\inℕ\))
Theo bài ra ta có hệ phương trình: \(\hept{\begin{cases}a=5b+9\\a=6b-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=59\\b=10\end{cases}}\)(thỏa mãn)
Ta dễ có bất đẳng thức: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)(*)
Thật vậy: (*)\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+c^2+2ac+b^2+d^2+2bd\)\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)(**)
Nếu ac + bd < 0 thì bất đẳng thức (**) luôn đúng
Nếu ac + bd\(\ge\)0 thì (**)\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\Leftrightarrow\left(ad-bc\right)^2\ge0\)*đúng*
Vậy (*) được chứng minh
Áp dụng bất đẳng thức trên, ta được: \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}\)\(=\sqrt{\left(b^2-ab+\frac{a^2}{4}\right)+\frac{3a^2}{4}}+\sqrt{\left(b^2-bc+\frac{c^2}{4}\right)+\frac{3c^2}{4}}\)\(=\sqrt{\left(b-\frac{a}{2}\right)^2+\frac{3a^2}{4}}+\sqrt{\left(\frac{c}{2}-b\right)^2+\frac{3c^2}{4}}\)\(\ge\sqrt{\left(\frac{c}{2}-\frac{a}{2}\right)^2+\frac{3\left(a+c\right)^2}{4}}=\sqrt{a^2+ac+c^2}\)
Vậy bất đẳng thức được chứng minh.
\(ĐK:x\ne-y\)
Ta có: \(8\left(x^2+y^2\right)+4xy=13-\frac{5}{\left(x+y\right)^2}\)\(\Leftrightarrow5\left(x^2+2xy+y^2\right)+3\left(x^2-2xy+y^2\right)+\frac{5}{\left(x+y\right)^2}+10=23\)\(\Leftrightarrow\left(5\left(x+y\right)^2+\frac{5}{\left(x+y\right)^2}+10\right)+3\left(x-y\right)^2=23\)\(\Leftrightarrow5\left(x+y+\frac{1}{x+y}\right)^2+3\left(x-y\right)^2=23\)(1)
Lại có: \(2x+\frac{1}{x+y}=1\Leftrightarrow\left(x+y+\frac{1}{x+y}\right)+\left(x-y\right)=1\)(2)
Từ (1) và (2) ta có hệ \(\hept{\begin{cases}5\left(x+y+\frac{1}{x+y}\right)^2+3\left(x-y\right)^2=23\\\left(x+y+\frac{1}{x+y}\right)+\left(x-y\right)=1\end{cases}}\)(*)
Đặt \(x+y+\frac{1}{x+y}=u;x-y=v\)thì hệ (*) trở thành \(\hept{\begin{cases}5u^2+3v^2=23\\u+v=1\end{cases}}\Leftrightarrow\hept{\begin{cases}5u^2+3v^2=23\left(3\right)\\v=1-u\left(4\right)\end{cases}}\)
Thay (4) vào (3), ta được: \(5u^2+3\left(1-u\right)^2=23\Leftrightarrow2\left(u-2\right)\left(4u+5\right)=0\Leftrightarrow\orbr{\begin{cases}u=2\\u=-\frac{5}{4}\end{cases}}\)
* Th1: \(u=2\Rightarrow v=-1\)hay \(x+y+\frac{1}{x+y}=2;x-y=-1\)
Thay x = y - 1 vào \(x+y+\frac{1}{x+y}=2\)ta được: \(2y-1+\frac{1}{2y-1}=2\Leftrightarrow4\left(y-1\right)^2=0\Leftrightarrow y=1\)(t/m \(y\ne\frac{1}{2}\)) suy ra x = 0
* Th2: \(u=-\frac{5}{4}\Rightarrow v=\frac{9}{4}\)hay \(x+y+\frac{1}{x+y}=\frac{-5}{4};x-y=\frac{9}{4}\)
Thay \(x=y+\frac{9}{4}\)vào \(x+y+\frac{1}{x+y}=\frac{-5}{4}\)ta được: \(2y+\frac{9}{4}+\frac{1}{2y+\frac{9}{4}}=-\frac{5}{4}\)(dễ thấy phương trình này vô nghiệm)
Vậy hệ có một nghiệm duy nhất \(\left(x,y\right)=\left(0,1\right)\)
Gọi chiều dài mảnh vườn là x ( x > 0 )
=> Chiều rộng mảnh vườn = 720/x ( m )
Tăng chiều dài 6m và giảm chiều rộng 4m
=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m
Khi đó diện tích mảnh vườn không đổi
=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )
Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )
=> Chiều dài mảnh vườn = 30m
Chiều rộng mảnh vườn = 720/30 = 24m
gọi số có hai chữ số đó là \(\overline{ab}\) ta có
\(\hept{\begin{cases}a-b=2\\\overline{a0b}-\overline{ab}=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=2\\100a+b-10a-b=630\end{cases}\Leftrightarrow}\hept{\begin{cases}a=7\\b=5\end{cases}}}\)
Vậy số đó là\(75\)
Gọi số xe to hoặc số xe nhỏ lần lượt là \(a,b\)(xe) (\(a,b\inℕ^∗\))
Theo bài ra, ta có hệ phương trình:
\(\hept{\begin{cases}a=b-2\\\frac{180}{a}-\frac{180}{b}=15\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{180}{b-2}-\frac{180}{b}=15\end{cases}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{360}{b\left(b-2\right)}=15\end{cases}}}\)
\(\frac{360}{b\left(b-2\right)}=15\Rightarrow15b\left(b-2\right)=360\Leftrightarrow\orbr{\begin{cases}b=6\left(tm\right)\\b=-4\left(l\right)\end{cases}}\)
Suy ra \(\hept{\begin{cases}a=4\\b=6\end{cases}}\).
số xe to là 4
số xe nhỏ là 6