K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

M A B C

Nối MA, MB tạo thành tam giác MAB

C là trung điểm của AB

áp dụng công thức đường trung tuyến

\(MC^2=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\) (*)

Lâu rồi tôi không nhớ là có được áp dụng công thức này hay không nếu phải chứng minh ta chứng minh như sau:

Áp dụng định lý hàm cos

Xét tg MAC có

\(MC^2=MA^2+AC^2-2.MA.AC.\cos\widehat{A}\)  (1)

Xét tg MAB có

\(MB^2=MA^2+AB^2-2.MA.AB.\cos\widehat{A}\Rightarrow\cos\widehat{A}=\frac{MA^2+AB^2-MB^2}{2.MA.AB}\) Thay vào (1) ta có

\(MC^2=MA^2+AC^2-2.MA.AC.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)

\(MC^2=MA^2+\frac{AB^2}{4}-2.MA.\frac{AB}{2}.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)

\(MC^2=MA^2+\frac{AB^2}{4}-\frac{MA^2+AB^2-MB^2}{2}=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\left(dpcm\right)\)

Từ (*)\(\Rightarrow MC^2=\frac{2.\frac{3a^2}{4}-a^2}{4}=\frac{a^2}{8}\Rightarrow MC=\frac{a}{2\sqrt{2}}\)

AB cố định => C cố định, M cách C cố định 1 khoảng không đổi \(=\frac{a}{2\sqrt{2}}\) nên M nằm trên đường tròn tâm C có bán kính\(=\frac{a}{2\sqrt{2}}\)

DD
29 tháng 1 2021

- Nếu \(x>y\)

\(x\left(x+y\right)>y\left(y+y\right)=2y^2\)

\(\sqrt{x+y}>\sqrt{y+y}=\sqrt{2y}\)

Suy ra: \(x\left(x+y\right)-2y^2+\sqrt{x+y}-\sqrt{2y}>0\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}-\sqrt{2y}>2y^2\).

- Nếu \(x< y\)

\(x\left(x+y\right)< y\left(y+y\right)=2y^2\)

\(\sqrt{x+y}< \sqrt{y+y}=\sqrt{2y}\)

Suy ra: \(x\left(x+y\right)-2y^2+\sqrt{x+y}-\sqrt{2y}< 0\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}-\sqrt{2y}< 2y^2\).

- Nếu \(x=y\)ta thấy thỏa mãn. 

4 tháng 2 2021

Cho tam giác ABC có đường cao BE, CF. Gọi M,N lần lượt là trung điểm của BE,CF. Kẻ AK⊥EF(K∈EF)

Chứng minh rằng tam giác KMN đồng dạng tam giác ABC.

 

4 tháng 2 2021

https://photos.app.goo.gl/hMy2YA1WJeardkva8

29 tháng 1 2021

\(\Delta=\left(-m^2\right)^2-4.1\left(m+1\right)=m^4-4m-4\)

Pt có nghiệm nguyên khi \(\Delta=m^4-4m-4\) là số chính phương

Nếu \(\orbr{\begin{cases}m=0\\m=1\end{cases}\Rightarrow\Delta< 0}\) ( loại)

Nếu m=2 => \(\Delta=4=2^2\) ( chọn)

Nếu \(m\ge3\Rightarrow2m\left(m-2\right)>5\Leftrightarrow2m^2-4m-5>0\)

\(\Leftrightarrow\Delta-\left(2m^2-4m-5\right)< \Delta< \Delta+4m+4\)

\(\Leftrightarrow m^4-2m^2+1< \Delta< m^4\)

\(\Leftrightarrow\left(m^2-1\right)^2< \Delta< \left(m^2\right)^2\)

=> \(\Delta\) không là số chính phương

Vậy m=2 

29 tháng 1 2021

Đặt \(K=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)\(\Rightarrow K^2=\left(49-12\sqrt{5}\right)+\left(49+12\sqrt{5}\right)-2\sqrt{49^2-\left(12\sqrt{5}\right)^2}\)\(=98-2\sqrt{1681}=98-82=16\)(1)

Dễ có: \(\sqrt{49-12\sqrt{5}}< \sqrt{49+12\sqrt{5}}\)nên \(K=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}< 0\)(2)

Từ (1) và (2) suy ra K = -4

29 tháng 1 2021

\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-12\sqrt{5}+4}-\sqrt{45+12\sqrt{5}+4}\)

\(=\sqrt{\left(3\sqrt{5}\right)^2-2.2.3\sqrt{5}+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2.2.3\sqrt{5}+2^2}\)

\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|=\left(3\sqrt{5}-2\right)-\left(3\sqrt{5}+2\right)\)

\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)