cho hình chữ nhật ABCD.Kẻ BE vuông góc với AC, I là trung điểm AE
M là trung điểm CD
H là trung điểm BE
a) Chứng minh HC//MI
b) Chứng minh MI vuông góc với IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua B dựng đường thẳng song song với DK và cắt AC tại G
Xét tam giác ADK ta có: AB = BD; BG//DK
⇒ AG = GK (định lý đường trung bình của tam giâc)
⇒ GK = \(\dfrac{1}{2}\) AK (1)
Xét tam giác BCG ta có:
BM = MC; MK // BG
⇒ GK = KC (định lý 1 đường trung bình của tam giác) (2)
Kết hợp (1) và (2) ta có:
KC = \(\dfrac{1}{2}\) AK
⇒ AK = 2KC (đpcm)
Dựng đường thẳng qua B và song song với DK cắt AC tại G
Xét tam giác ADK ta có:
AB = BD; BG // DK
⇒ KG = GA = \(\dfrac{1}{2}\) AK (định lý 1 đường trung bình của tam giác) (1)
Xét tam giác BCG ta có:
BM = MC; MK // BG
⇒ KC = KG (định lý 1 đường trung bình của tam giác) (2)
Kết hợp (1) và (2) ta có:
KC = \(\dfrac{1}{2}\) AK
⇒ AK = 2KC (đpcm)
a) PTHH \(S+O_2\underrightarrow{t^o}SO_2\)
b) Khí SO2 chính là chất làm cho chuột chết. Hợp chất này tên là lưu huỳnh đi-ô-xít (tên Tiếng Anh là sulfur dioxide). Đây là một oxit axit.
A B C M N
Ta có
\(BC=4CM\Rightarrow\dfrac{CM}{BC}=\dfrac{1}{4}\Rightarrow\dfrac{CM}{BM}=\dfrac{1}{3}=\dfrac{CN}{AN}\)
=> MN//AB (Talet đảo trong tam giác)
Lời giải:
Gọi $T$ là giao điểm $AK, DE$.
Xét tứ giác $ADHE$ có $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên $ADHE$ là hình chữ nhật.
$\widehat{ADT}=\widehat{ADE}=\widehat{AHE}=90^0-\widehat{EHC}=\widehat{C}(1)$
Mặt khác:
Tam giác $ABC$ vuông tại $A$, $AK$ là đường trung tuyến ứng với cạnh huyền nên $AK=\frac{BC}{2}=BK$
$\Rightarrow ABK$ là tam giác cân tại $K$
$\Rightarrow \widehat{TAD}=\widehat{KAB}=\widehat{KBA}=\widehat{B}(2)$
Từ $(1); (2)\Rightarrow \widehat{ADT}+\widehat{TAD}=\widehat{B}+\widehat{C}=90^0$
$\Rightarrow \widehat{DTA}=180^0-(\widehat{ADT}+\widehat{TAD})=180^0-90^0=90^0$
$\Rightarrow DE\perp AK$ (đpcm)
\(n_{Na_2O}=\dfrac{12,4}{62}=0,2\left(mol\right)\\ Na_2O+H_2O\rightarrow2NaOH\\ n_{NaOH}=0,2.2=0,4\left(mol\right)\\ C_{MddNaOH}=\dfrac{0,4}{0,4}=1\left(M\right)\)
bạn vào toán bình thường r kéo xuống khi đến bài đầu tiên của kì 2
a) Do M là trung điểm của CD (gt)
⇒ CM = DM = CD/2
Do I là trung điểm AE (gt)
H là trung điểm BE (gt)
⇒ HI là đường trung bình của ∆ABE
HI // AB và HI = AB/2 (2)
Do ABCD là hình chữ nhật (gt)
⇒ AB = CD (3)
Từ (1), (2) và (3) ⇒ HI = CM
Do ABCD là hình chữ nhật (gt)
⇒ AB // CD (4)
Từ (2) và (4) ⇒ HI // CD
⇒ HI // CM
Tứ giác CMIH có:
HI // CM (cmt)
HI = CM (cmt)
⇒ CMIH là hình bình hành
⇒ HC // MI
b) Do HC // MI (cmt)
⇒ ∠MIC = ∠ICH (so le trong)
Do HI // MC (cmt)
⇒ ∠HIC = ∠ICM (so le trong)
Do I và H lần lượt là trung điểm của AE và BE (gt)
⇒ AE/BE = AI/BH
Xét hai tam giác vuông: ∆AEB và ∆BEC có:
∠BAE = ∠CBE (cùng phụ ACB)
⇒ ∆AEB ∆BEC (g-g)
⇒ AE/BE = AB/BC
Mà AE/BE = AI/BH (cmt)
⇒ AI/BH = AB/AC
Xét ∆AIB và ∆BHC có:
AI/BH = AB/BC (cmt)
∠BAI = ∠CBH (cùng phụ ACB)
⇒ ∆AIB ∆BHC (g-g)
⇒ ∠ABI = ∠BCH
Do HI // AB (cmt)
⇒ ∠ABI = ∠BIH (so le trong)
⇒ ∠BIH = ∠BCH
Ta có:
∠BIM = ∠BIH + ∠HIC + ∠MIC
= ∠BCH + ∠ICM + ∠ICH
= ∠BCD = 90⁰
Vậy MI ⊥ IB
Gọi N là trung điểm của BE
=> MN là đường trung ình của tam giác ABE
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BE và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)