Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\sqrt{a^2+b^2+c^2}\)
Có: \(x=\sqrt{a^2+b^2+c^2}\ge\sqrt{\frac{1}{3}\left(a+b+c\right)^2}=\sqrt{3}\)
\(x=\sqrt{a^2+b^2+c^2}=\sqrt{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}\le\sqrt{\left(a+b+c\right)^2}=3\)
\(\Rightarrow\sqrt{3}\le x\le3\)
Khi đó, có: \(P=\sqrt{a^2+b^2+c^2}+\frac{1}{a^2+b^2+c^2}=x+\frac{1}{x^2}\)
Ta chứng minh \(P=x+\frac{1}{x^2}\le\frac{28}{9}\)
BĐT \(\Leftrightarrow9x^3-28x^2+9\le0\)
\(\Leftrightarrow\left(x-3\right)\left(9x^2-x-3\right)\le0\)(Luôn đúng vì \(\sqrt{3}\le x\le3\))
Vậy \(maxP=\frac{28}{9}\Leftrightarrow x=3\Leftrightarrow\left(a,b,c\right)\in\left\{\left(0;0;3\right)\right\}\)và các hoán vị.
Bài 1:
Ta có: \(P=\frac{1}{1+x^2}+\frac{4}{4+y^2}=\frac{1}{1+x^2}+\frac{1}{1+\frac{y^2}{4}}\)
Đặt \(\left(x;\frac{y}{2}\right)=\left(a;b\right)\left(a,b>0\right)\)
\(\Rightarrow\hept{\begin{cases}P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\\ab\ge1\end{cases}}\)
Ta có: \(P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\)
\(\ge\frac{1}{ab+a^2}+\frac{1}{ab+b^2}+2ab=\frac{1}{ab}+2ab\)
\(=\left(\frac{1}{ab}+ab\right)+ab\ge2+1=3\)
Dấu "=" xảy ra khi: \(ab=\frac{1}{ab}\Rightarrow ab=1\Rightarrow xy=2\)
Bài 3:
Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\left(x,y,z>1\right)\)
Khi đó:
\(BĐTCCM\Leftrightarrow\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\ge12\)
Thật vậy vì ta có:
\(VT=\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\)
\(=\frac{x^2+2x+1}{y}+\frac{y^2+2y+1}{z}+\frac{z^2+2z+1}{x}\)
\(=\left(\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}\right)+\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng BĐT Cauchy ta có:
\(VT\ge3\sqrt[3]{\frac{2x}{y}\cdot\frac{2y}{z}\cdot\frac{2z}{x}}+6\sqrt[6]{\frac{x^2}{y}\cdot\frac{y^2}{z}\cdot\frac{z^2}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}=6+6=12\)
Dấu "=" xảy ra khi: \(x=y=z\Leftrightarrow a=b=c\)
A B C D M N E F I
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
a) Dựa vào dấu hiệu nhận biết ở bài 2, chứng minh được EH.EB = EI.EC (hệ thức lượng trong tam giác vuông).
b) Gọi F là giao điểm của Ek và BC.