Cho hai số a, b khác 0 thoả mãn
\(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\)
Tìm Min S = ab + 2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^3+y^3}{2xy}+\frac{y^3+z^3}{2yz}+\frac{z^3+x^3}{2zx}\)
\(=\frac{x^3}{2xy}+\frac{y^3}{2xy}+\frac{y^3}{2yz}+\frac{z^3}{2yz}+\frac{z^3}{2zx}+\frac{x^3}{2zx}\)
\(=\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left[2\left(x+y+z\right)\right]^2}{4\left(x+y+z\right)}=\frac{4\left(x+y+z\right)^2}{4\left(x+y+z\right)}=x+y+z\)
Vậy bất đẳng thức ban đầu được chứng minh
Đẳng thức xảy ra <=> x = y = z
Sử dụng bđt phụ sau: với a, b là các số dương thì \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy ta có:
\(a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)( bđt luôn đúng với mọi \(a,b\ge0\))
Dấu " = " xảy ra \(\Leftrightarrow a=b\)
Áp dụng bđt phụ ta có: với x, y, z là các số dương thì:
\(\frac{x^3+y^3}{2xy}+\frac{y^3+z^3}{2yz}+\frac{z^3+x^3}{2zx}\ge\frac{xy\left(x+y\right)}{2xy}+\frac{yz\left(y+z\right)}{2yz}+\frac{zx\left(z+x\right)}{2zx}\)
\(=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{x+y+y+z+z+x}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)( đpcm )
Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)
Cặp số \(\left(3;y\right)\)là 1 nghiệm của phương trình \(3x-6y=9\)
\(\Rightarrow\)Thay \(x=3\)và \(y=y\)vào phương trình ta được:
\(9-6y=9\)\(\Leftrightarrow6y=0\)\(\Leftrightarrow y=0\)
Vậy \(y=0\)
cấy pt dạng ni lớp 8 học rồi mà :v
chỉ là thêm công thức nghiệm vào thôi ._.
1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0
<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0
<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0
Đặt t = x2 + 10x + 16
pt <=> t( t + 8 ) + 16 = 0
<=> t2 + 8t + 16 = 0
<=> ( t + 4 )2 = 0
<=> ( x2 + 10x + 16 + 4 )2 = 0
<=> ( x2 + 10x + 20 )2 = 0
=> x2 + 10x + 20 = 0
Δ' = b'2 - ac = 25 - 20 = 5
Δ' > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)
\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)
Vậy ...
2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0
<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0
<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0
Đặt t = x2 + 5x + 4
pt <=> t( t + 2 ) - 24 = 0
<=> t2 + 2t - 24 = 0
<=> ( t - 4 )( t + 6 ) = 0
<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0
<=> x( x + 5 )( x2 + 5x + 10 ) = 0
Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm
=> x = 0 hoặc x = -5
Vậy ...
3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0
<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0
<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0
Đặt t = x2 - 8x + 7
pt <=> t( t + 8 ) - 20 = 0
<=> t2 + 8t - 20 = 0
<=> ( t - 2 )( t + 10 ) = 0
<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0
<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0
<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)
+) x2 - 8x + 5 = 0
Δ' = b'2 - ac = 16 - 5 = 11
Δ' > 0 nên có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)
\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)
+) x2 - 7x + 18 = 0
Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm
Vậy ...
Đáp số:5 người. Yêu nhau cau sáu bổ ba, Ghét nhau cau sáu bổ ra làm mười. Mỗi người một miếng trăm người, Có mười bảy quả hỏi người ghét yêu.
Gọi giá tiền mua 1 quyển vở là x
giá tiền mua 1 cái bút là y
( đồng ; x,y > 0 )
Mua 12 quyển vở và 10 cái bút hết 92 400đ
=> 12x + 10y = 92 400
<=> 6x + 5y = 46 200 (1)
Mua 15 quyển vở và 7 cái bút cùng loại hết 99 000đ
=> 15x + 7y = 99 000 (2)
Từ (1) và (2) => Ta có hệ phương trình
\(\hept{\begin{cases}6x+5y=46200\\15x+7y=99000\end{cases}}\)( bạn tự giải hệ nhé :v )
=> x = 5200 và y = 3000 ( tm )
Vậy giá tiền mua 1 quyển vở là 5200đ
giá tiền mua 1 cái bút là 3000đ
Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)
\(\Rightarrow S=ab+2009\ge2007\)
Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2
* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1