Từ điểm M nằm ngoài (O) kẻ tiếp tuyến MA và MB với đường tròn (A,B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a, Chứng minh I là trung điểm AB
b, Chứng minh MA²=MK.MC và ∆MKI đồng dạng với ∆MOC
c, Lấy điểm D trên cung lớn AB (DB<DA), kẻ BH⊥AD tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc ED cắt tia BH tại P. Chứng minh BP.OA=HP.OM